引用本文
  • 周永权.多项式理想计算的神经网络方法[J].广西科学,2001,8(2):90-92.    [点击复制]
  • Zhou Yongquan.Neural Network Approach to Polynomial Ideal Computation[J].Guangxi Sciences,2001,8(2):90-92.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 344次   下载 397 本文二维码信息
码上扫一扫!
多项式理想计算的神经网络方法
周永权
0
(广西民族学院数学与计算机科学系, 南宁市西乡塘 530006)
摘要:
提出一种用于多项式理想计算的理想同余神经元,其工作方式既不同于过去感知器输入加阈值的激活方式,也不同于通常意义下激活函数选取,且保持神经元的运算特性.以Grobner基计算为例,给出利用该神经元计算Grobner基神经网络描述性学习算法.
关键词:  理想同余神经元  多项式理论  Grobner基  描述性学习算法
DOI:
投稿时间:2000-09-28修订日期:2000-12-28
基金项目:
Neural Network Approach to Polynomial Ideal Computation
Zhou Yongquan
(Dept. of Math. & Comp. Sci., Guangxi Univ. for Nationalities, Xixiangtang, Nanning, Guangxi, 530006, China)
Abstract:
The concept of polynomial ideal congruent neuron are proposed. It is different from both general perception and chosen stimulate function in working way, and is still characterized massively parallel architecture of the polynomial ideal computation. The polynomial ideal congruent neural network learning algorithm is discussed with an application of this neuron to computation of Grobner base.
Key words:  indeal congruent neuron  polynomial theory  Grobner base  polynomial ideal learning algorithms

用微信扫一扫

用微信扫一扫