引用本文
  • 李文勇,李泉永.利用神经网络进行近似分析的结构优化设计[J].广西科学,2001,8(2):86-89.    [点击复制]
  • Li Wenyong,Li quanyong.Structural Optimization Using Approximation Analysis by Neural Networks[J].Guangxi Sciences,2001,8(2):86-89.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 397次   下载 462 本文二维码信息
码上扫一扫!
利用神经网络进行近似分析的结构优化设计
李文勇, 李泉永
0
(桂林电子工业学院机电与交通工程系, 桂林市金鸡路 541004)
摘要:
利用人工神经网络的高度并行和非线性映射的功能,提出用多层BP网络描述任一弹性结构的应力、位移等量和结构设计变量之间的映射关系,建立了基于人工神经网络的结构全局近似分析方法。利用复合形优化思想对BP网络进行设计和学习,建立结构近似分析的神经网络模型。桁架算例分析表明,利用神经网络进行近似分析的结构优化设计具有较高的设计精度和适应性。
关键词:  神经网络  结构近似分析  复合形法  结构优化
DOI:
投稿时间:2000-08-03
基金项目:电科院预研基金资助项目(编号:DJ7.3.9.2)。
Structural Optimization Using Approximation Analysis by Neural Networks
Li Wenyong, Li quanyong
(Dept. of Electronic Machinery & Traffic Engineering, Guilin Institute of Electronic Technology, Jingjilu, Guilin, Guangxi, 541004, China)
Abstract:
The mapping between the elastic structure's stress and displacement and it's design variables with multi-layer BP networks is described using the high parallelity and nonlinear mapping of the Artificial Neural Networks (ANNs)'. An approach to the global Structural Approximation Analysis (SAA) is developed by ANNs.The idea of multiplex shape optimization method is introduced to design and train the neural networks, and then establish the ANNs' model for SAA. The example of truss shows the structural optimization using approximation analysis by ANNs has high precision and adaptability.
Key words:  neural networks  structural approximation analysis  multiplex shape method  structural optimization

用微信扫一扫

用微信扫一扫