考虑求解如下非光滑凸优化问题
$ {f^ * } = \inf \left\{ {f\left( x \right):x \in X} \right\}, $ | (0.1) |
其中, f:Rn→R为非光滑凸函数, X
非光滑优化是最优化研究[1-3]的重要分支, 其在数据挖掘[4]、图像恢复[5]及机器学习[6]等领域有着广泛应用.束方法是求解非光滑优化最有效的方法之一[7-9].传统束方法包括邻近束方法[10]、水平束方法[11]和信赖域束方法[12]等.最近, De Oliveira和Solodov[13]结合邻近束方法与水平束方法的稳定性, 提出求解问题(0.1)的一个双稳定束方法, 其通过求解如下子问题产生新迭代点xk+1:
$ \begin{array}{l} \min \\ \left\{ {\mathop {{f_k}}\limits^ \vee \left( x \right) + \frac{1}{{2{\tau _k}}}{{\left\| {x - {{\hat x}_k}} \right\|}^2}:\mathop {{f_k}}\limits^ \vee \left( x \right) \le {l_k},x \in X} \right\}, \end{array} $ | (0.2) |
其中,
注意到子问题(0.2)的邻近项采用的是经典的欧氏距离, 为充分利用可行集的几何结构, 加快收敛速度, 提升数值效果, 许多方法引入了非欧氏距离.沈洁等[14]在文献[13]中引入矩阵范数, 应用对偶思想进行求解, 分析算法的全局收敛性.Kiwiel等在邻近点算法中引入Bregman距离替代邻近项, 获得算法的全局收敛性[15]; 在邻近束方法中引入Bregman距离替代邻近项, 允许求解子问题时出现近似解, 获得算法的全局收敛性[16].
本文基于邻近函数, 引入非欧氏距离, 对子问题(0.2)进行改进, 提出一个带非欧氏范数的双稳定束方法.该方法充分吸收了传统邻近束方法和水平束方法的优势, 在产生新迭代点的二次规划子问题中引入邻近函数代替传统的欧氏距离, 使得在计算上可充分利用可行集的几何结构, 获得优良的数值效果.
本文符号说明.凸函数f在x处的次微∂f(x)={g:f(y)≥f(x)+〈g, y-x〉, ∀y}, ε-次微分记为∂εf(x)={g:f(y)≥f(x)+〈g, y-x〉-ε, ∀y}.NX(x)表示X在点x处的法锥, 即NX(x)={y:〈y, z-x〉≤0, ∀z∈X}.iX(x)为指示函数, 即:若x∈X, 则iX(x)=0;否则iX(x)=+∞.
1 算法与性质引入邻近函数[17]
$ D\left( {x,y} \right) = h\left( x \right) - h\left( y \right) - \left\langle {\nabla h\left( y \right),x - y} \right\rangle . $ |
为叙述简便, 假设h:X→R为一阶连续可微的强凸函数, 满足
$ \begin{array}{l} h\left( y \right) \ge h\left( x \right) + \left\langle {\nabla h\left( y \right),y - x} \right\rangle + \frac{{{\sigma _h}}}{2}\\ {\left\| {y - x} \right\|^2},\forall x,y \in X, \end{array} $ | (1.1) |
其中σh > 0为函数h的凸性参数.
将子问题(0.2)推广如下:
$ \min \left\{ {\mathop {{f_k}}\limits^ \vee \left( x \right) + \frac{1}{{{\tau _k}}}D\left( {x,{{\hat x}_k}} \right):\mathop {{f_k}}\limits^ \vee \left( x \right) \le {l_k},x \in X} \right\}, $ | (1.2) |
其中
通过引入一个变量t, 问题(1.2)可写成:
$ \begin{array}{l} \mathop {\min }\limits_{\left( {x,t} \right) \in {R^{n + 1}}} \\ \left\{ {t + \frac{1}{{{\tau ^k}}}D\left( {x,{{\hat x}_k}} \right):\mathop {{f_k}}\limits^ \vee \left( x \right) \le t,t \le {l_k},x \in X} \right\}, \end{array} $ | (1.3) |
易知问题(1.2)与问题(1.3)关于x部分的解是等价的.
以下引理给出子问题(1.2)的性质.
引理1.1 若Xk={x∈X:
$ \nabla h\left( {{x_{k + 1}}} \right) = \nabla h\left( {{{\hat x}_k}} \right) - {\tau _k}{\mu _k}{{\hat g}_k}, $ | (1.4) |
$ {{\hat g}_k} = {s_{k + 1}} + \frac{1}{{{\mu _k}}}{p_{k + 1}},{\mu _k} = {\lambda _k} + 1, $ | (1.5) |
$ {\mu _k}\left( {\mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) - {t_{k + 1}}} \right) = 0,{\lambda _k}\left( {\mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) - {l_k}} \right) = 0 $ |
成立.此外, 对于任意的x∈X, 定义聚集线性化函数
$ \bar f_k^a\left( x \right): = \mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) + \left\langle {{{\hat g}_k},x - {x_{k + 1}}} \right\rangle , $ | (1.6) |
则
$ \bar f_k^a\left( x \right) \le \mathop {{f_k}}\limits^ \vee \left( x \right) \le f\left( x \right),x \in X. $ | (1.7) |
证明: 由于问题(1.2)的目标函数是强凸函数且可行集非空, 故存在唯一最优解xk+1.根据问题(1.3)的最优性条件, 存在最优解(xk+1, tk+1)及拉格朗日乘子μk≥0和λk≥0使得
$ \begin{array}{l} 0 \in \frac{1}{{{\tau _k}}}\left( {\nabla h\left( {{x_{k + 1}}} \right) - \nabla h\left( {{{\hat x}_k}} \right)} \right) + {\mu _k}\partial \mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) + \\ {N_X}\left( {{x_{k + 1}}} \right), \end{array} $ | (1.8) |
$ 0 = 1 - {\mu _k} + {\lambda _k}, $ |
$ {\mu _k}\left( {\mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) - {t_{k + 1}}} \right) = 0,\;\;\;\;{\lambda _k}\left( {{t_{k + 1}} - {l_k}} \right) = 0. $ |
由μk=1+λk≥1, 可知
$ \begin{array}{l} \nabla h\left( {{x_{k + 1}}} \right) - \nabla h\left( {{{\hat x}_k}} \right) - {\tau _k}\left( {{\mu _k}{s_{k + 1}} + {p_{k + 1}}} \right) = \\ \nabla h\left( {{{\hat x}_k}} \right) - {\tau _k}{\mu _k}{{\hat g}_k}. \end{array} $ |
对于任意的x∈X, 结合公式(1.5), (1.6)及pk+1∈NX(xk+1), sk+1∈∂
$ \begin{array}{l} \bar f_k^a\left( x \right) = \mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) + < {s_{k + 1}},x - {x_{k + 1}} > + \frac{1}{{{\mu _k}}} < {p_{k + 1}},\\ x - {x_{k + 1}} > \le \mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) + < {s_{k + 1}},x - {x_{k + 1}} > \le \\ \mathop {{f_k}}\limits^ \vee \left( x \right) \le f\left( x \right). \end{array} $ |
基于文献[13]中的算法1及子问题(1.3), 下面给出带非欧氏范数的双稳定束方法.
算法1 (带非欧氏范数的双稳定束方法)
步骤0 (初始化)取参数β, ml ∈(0, 1), 终止参数TolΔ, Tole, Tolg > 0.取x1∈X, 令
步骤1 (第一终止测试)令Δk=f(
步骤2 (可行性检测)计算水平参数lk=f(
步骤3 (寻找新迭代点)解问题(1.3)得(xk+1, tk+1)及相应于水平参数t≤lk的乘子λk, 且有μk=λk+1, vkτ=f(
步骤4 (第二终止测试)若
步骤5 (下降测试)取fk+1low∈[fklow, f*], 若
$ f\left( {{x_{k + 1}}} \right) \le f\left( {{{\hat x}_k}} \right) - \beta v_k^\tau $ | (1.9) |
成立, 转至步骤5.1(下降步); 否则转至步骤5.2(无效步).
步骤5.1 (下降步)令
选取模型
步骤5.2 (无效步)令
选取模型
步骤6 (循环)令k=:k+1, 返回步骤1.
以下引理给出算法的近似最优性条件, 其证明类似文献[13].
引理1.2 聚集线性化误差
$ {{\hat e}_k} \ge 0,{{\hat e}_k} + < {{\hat g}_k},{{\hat x}_k} - {x_{k + 1}} > = v_k^\tau \ge v_k^l. $ | (1.10) |
若μk > 1, 则vkτ=vkl.此外, 对于任意的x∈X, 有
$ f\left( {{{\hat x}_k}} \right) + < {{\hat g}_k},x - {{\hat x}_k} > - {{\hat e}_k} \le f\left( x \right). $ | (1.11) |
根据算法1的步骤可知在迭代过程中必定会出现以下3种情况之一:水平集Xk=Ø出现无限次; 水平集Xk=Ø出现有限次时, 算法1产生有限多下降步; 水平集Xk=Ø出现有限次时, 算法1产生无限多下降步.
首先讨论水平集Xk=Ø出现无限次的情形.
定理2.1[13] 假设Xk=Ø出现无限次, 则Δk→0, {f(
下面讨论Xk=Ø出现有限次的情形.不失一般性, 假设Xk≠Ø, ∀k≥1.
首先讨论算法1产生有限多下降步的情形.
对于x∈X, 定义函数
$ {{\bar \phi }_k}\left( x \right): = \bar f_k^a\left( x \right) + \frac{1}{{{\tau _k}}}D\left( {x,{{\hat x}_k}} \right), $ | (2.1) |
$ \mathop {{\phi _k}}\limits^ \vee \left( x \right): = \mathop {{f_k}}\limits^ \vee \left( x \right) + \frac{1}{{{\tau _k}}}D\left( {x,{{\hat x}_k}} \right). $ | (2.2) |
引理2.3 若μk=1, 则
$ \begin{array}{l} D\left( {x,{x_{k + 1}}} \right) + D\left( {{x_{k + 1}},{{\hat x}_k}} \right) - D\left( {x,{{\hat x}_k}} \right) = < \\ \nabla h\left( {{{\hat x}_k}} \right) - \nabla h\left( {{x_{k + 1}}} \right),x - {x_{k + 1}} > = {\tau _k} < {{\hat g}_k},x - \\ {x_{k + 1}} > , \end{array} $ | (2.3) |
$ {{\bar \phi }_k}\left( x \right) = {{\bar \phi }_k}\left( {{x_{k + 1}}} \right) + \frac{1}{{{\tau _k}}}D\left( {x,{x_{k + 1}}} \right). $ | (2.4) |
证明: 由公式(1.4)有
$ \begin{array}{l} D\left( {x,{x_{k + 1}}} \right) + D\left( {{x_{k + 1}},{{\hat x}_k}} \right) - D\left( {x,{{\hat x}_k}} \right) = < \\ \nabla h\left( {{{\hat x}_k}} \right) - \nabla h\left( {{x_{k + 1}}} \right),x - {x_{k + 1}} > = {\tau _k} < {{\hat g}_k},x - \\ {x_{k + 1}} > . \end{array} $ |
根据公式(1.6), (2.1)与(2.3)有
$ \begin{array}{l} {{\bar \phi }_k}\left( x \right) = \mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) + < {{\hat g}_k},x - {x_{k + 1}} > + \frac{1}{{{\tau _k}}}D\left( {x,} \right.\\ \left. {{x_k}} \right) = \bar f_k^a\left( {{x_{k + 1}}} \right) + < {{\hat g}_k},x - {x_{k + 1}} > + \frac{1}{{{\tau _k}}}D\left( {x,{{\hat x}_k}} \right) = \\ {{\bar \phi }_k}\left( {{x_{k + 1}}} \right) - \frac{1}{{{\tau _k}}}D\left( {{x_{k + 1}},{{\hat x}_k}} \right) + \frac{1}{{{\tau _k}}}\left( {D\left( {x,{x_{k + 1}}} \right) + D\left( {{x_{k + 1}},} \right.} \right.\\ \left. {\left. {{{\hat x}_k}} \right) - D\left( {x,{{\hat x}_k}} \right)} \right) + \frac{1}{{{\tau _k}}}D\left( {x,{{\hat x}_k}} \right) = {{\bar \phi }_k}\left( {{x_{k + 1}}} \right) + \frac{1}{{{\tau _k}}}D\left( {x,} \right.\\ \left. {{x_{k + 1}}} \right). \end{array} $ |
引理2.4 假设存在k1≥1, 对任意k≥k1, 下降测试公式(1.9)不成立, 即产生的都是无效步.若μk=1, 则
$ f\left( {{x_{k + 1}}} \right) - \mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) \to 0, $ | (2.5) |
此外, 当{τk}→τ∞ > 0时, 有
$ \begin{array}{l} {x_{k + 1}} \to {x_\infty }: = {\rm{Arg}}\min \left\{ {f\left( x \right) + \frac{1}{{{\tau _\infty }}}D\left( {x,{{\hat x}_{{k_1}}}} \right),} \right.\\ \left. {x \in X} \right\}. \end{array} $ | (2.6) |
证明: 对任意的k≥k1, 由公式(1.7), (2.1), (2.2)和(2.4)可得
$ \begin{array}{l} f\left( {{{\hat x}_{{k_1}}}} \right) \ge {{\overset{\vee }{\mathop{f}}\,}_{k+1}} \left( {{\hat x_{{k_1}}}} \right) = \overset{\vee }{\mathop{\phi }}\,{{}_{k+1}}\left( {{{\hat x}_{{k_1}}}} \right) \ge \overset{\vee }{\mathop{\phi }}\,{{}_{k+1}}\left( {{x_{k + 2}}} \right) = \\ {{\bar \phi }_{k + 1}}\left( {{x_{k + 2}}} \right) \ge {{\bar \phi }_k}\left( {{x_{k + 2}}} \right) \ge {{\bar \phi }_k}\left( {{x_{k + 1}}} \right) + \\ \frac{1}{{{\tau _k}}}D\left( {{x_{k + 2}},{x_{k + 1}}} \right) \ge {{\bar \phi }_k}\left( {{x_{k + 1}}} \right). \end{array} $ |
因为
f(xk+2)-f(xk+1)≥
设x为{xk+1}的任一聚点, 则存在无限指标集K′, 使得xk+1→x, k∈K′.由公式(1.7), (2.1)和(2.4)有
$ \begin{array}{l} f\left( x \right) + \frac{1}{{{\tau _k}}}D\left( {x,{{\hat x}_{{k_1}}}} \right) \ge \bar f_k^a\left( {{x_{k + 1}}} \right) + \frac{1}{{{\tau _k}}}D\left( {x,{{\hat x}_{{k_1}}}} \right) = \\ {{\bar \phi }_k}\left( x \right) \ge {{\bar \phi }_k}\left( {{x_{k + 1}}} \right) = \bar f_k^a\left( {{x_{k + 1}}} \right) + \frac{1}{{{\tau _k}}}D\left( {{x_{k + 1}},{{\hat x}_{{k_1}}}} \right) = \\ f\left( {{x_{k + 1}}} \right) + \left( {\mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) - f\left( {{x_{k + 1}}} \right)} \right) + \frac{1}{{{\tau _k}}}\left( {h\left( {{x_{k + 1}}} \right) - } \right.\\ \left. {h\left( {{{\hat x}_{{k_1}}}} \right) - < \nabla h\left( {{{\hat x}_{{k_1}}}} \right),{x_{k + 1}} - {{\hat x}_{{k_1}}} > } \right),x \in X. \end{array} $ |
上式对k∈K′, k→∞取极限有
$ \begin{array}{l} f\left( x \right) + \frac{1}{{{\tau _\infty }}}D\left( {x,{{\hat x}_{{k_1}}}} \right) \ge f\left( {\bar x} \right) + \frac{1}{{{\tau _\infty }}}D\left( {\bar x,{{\hat x}_{{k_1}}}} \right),\\ x \in X. \end{array} $ |
由问题(2.6)解的唯一性知x=x∞, 因此结合{xk+1}的有界性及的任意性可得{xk+1}→x∞.
定理2.2 设存在k1≥1, 当k≥k1时, 下降测试公式(1.9)不成立, 则集合K:={k:μk > 1}为无限集, 且
证明: 根据算法1知序列{vkl}是非增的, 由步骤5.1有vk+1l=mlvkl, ∀k∈K.
反证法, 假设K是有限集.由引理1.2, 存在k2≥k1使得
$ {\mu _k} = 1,{\lambda _k} = 0,v_k^l = v_{{k_2}}^l > 0,\forall k \ge {k_2}. $ |
结合引理2.4, 得{f(xk+1)}→f(x∞).若下降测试公式(1.9)不成立, 则有
$ \begin{array}{l} f\left( {{x_{k + 1}}} \right) - \mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) > \mathop {{f_k}}\limits^ \vee \left( {{{\hat x}_{{k_1}}}} \right) - \beta v_k^\tau - \\ \mathop {{f_k}}\limits^ \vee \left( {{x_{k + 1}}} \right) = \left( {1 - \beta } \right)v_k^\tau ,\forall k \ge {k_1}. \end{array} $ |
由β∈(0, 1), 结合公式(2.5), 可知vkτ→0, 这与vkτ≥vkl=vlk2 > 0, ∀k≥k2矛盾.因此, K为无限集.
由K为无限集, 根据算法1步骤5.1有vk+1l=mlvkl, ∀ k ∈ K, 因为ml∈(0, 1)且{vkl}单调非增, 所以vkl→0, k→∞.由引理1.2知, vkτ=vkl, k ∈ K.因此{vkτ}→0, k∈K.由h的强凸性, 根据文献[18]定理2.1.9有
$ \begin{array}{l} < \nabla h\left( {{{\hat x}_{{k_1}}}} \right) - \nabla h\left( {{x_{k + 1}}} \right),{{\hat x}_{{k_1}}} - {x_{k + 1}} > \ge \\ {\sigma _h}{\left\| {{{\hat x}_{{k_1}}} - {x_{k + 1}}} \right\|^2}, \end{array} $ | (2.7) |
结合公式(1.4), (1.10)和(2.7), 有
$ \begin{array}{l} v_k^\tau = {{\hat e}_k} + < {{\hat g}_k},{{\hat x}_{{k_1}}} - {x_{k + 1}} > = {{\hat e}_k} + \frac{1}{{{\tau _k}{\mu _k}}} < \\ \nabla h\left( {{{\hat x}_{{k_1}}}} \right) - \nabla h\left( {{x_{k + 1}}} \right),{{\hat x}_{{k_1}}} - {x_{k + 1}} > \ge {{\hat e}_k} + \frac{{{\sigma _h }}}{{{\tau _k}{\mu _k}}}\\ {\left\| {{{\hat x}_{{k_1}}} - {x_{k + 1}}} \right\|^2} \ge 0,k \in K. \end{array} $ |
所以
接下来讨论算法1产生无限多下降步的情形.
定理2.3 假设算法1产生无限多下降步, 则{f(
证明: 记{
$ \nabla h\left( {{{\hat x}_{k\left( {j + 1} \right)}}} \right) = \nabla h\left( {{{\hat x}_{k\left( j \right)}}} \right) - {\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}}{{\hat g}_{i\left( j \right)}}, $ | (2.8) |
$ {{\hat g}_{i\left( j \right)}} \in {\partial _{{{\hat e}_{k\left( j \right)}}}}\left( {f + {i_X}} \right)\left( {{{\hat x}_{k\left( j \right)}}} \right), $ | (2.9) |
$ \begin{array}{l} {\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}} \ge {\tau _{{m }{in}}},\\ f\left( {{{\hat x}_{k\left( j \right)}}} \right) - f\left( {{{\hat x}_{k\left( {j + 1} \right)}}} \right) \ge \beta v_{i\left( j \right)}^\tau . \end{array} $ | (2.10) |
由算法1知{f(
由τi(j)μi(j)≥τmin > 0, ∀j≥1, 有
$ \sum\limits_{j = 1}^\infty {{\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}}} = + \infty . $ | (2.11) |
结合β∈(0, 1)和{f(
$ \begin{array}{l} v_{i\left( j \right)}^\tau = {{\hat e}_{i\left( j \right)}} + < {{\hat g}_{i\left( j \right)}},{{\hat x}_{k\left( j \right)}} - {{\hat x}_{k\left( {j + 1} \right)}} > = {{\hat e}_{i\left( j \right)}} + \\ \frac{1}{{{\tau _{i\left( j \right)}}{u_{i\left( j \right)}}}} < \nabla h\left( {{{\hat x}_{k\left( j \right)}}} \right) - \nabla h\left( {{{\hat x}_{k\left( {j + 1} \right)}}} \right),{{\hat x}_{k\left( j \right)}} - {{\hat x}_{k\left( {j + 1} \right)}} > \ge \\ {{\hat e}_{i\left( j \right)}} + \frac{{{\sigma _h}}}{{{\tau _{i\left( j \right)}}{u_{i\left( j \right)}}}}{\left\| {{{\hat x}_{k\left( j \right)}} - {{\hat x}_{k\left( {j + 1} \right)}}} \right\|^2} \ge 0, \end{array} $ |
所以
$ {{\hat e}_{i\left( j \right)}} \to 0,{{\hat x}_{k\left( j \right)}} - {{\hat x}_{k\left( {j + 1} \right)}} \to 0,j \to \infty . $ | (2.12) |
因为下降序列{f(
$ \begin{array}{l} D\left( {z,{{\hat x}_{k\left( {j + 1} \right)}}} \right) = D\left( {z,{{\hat x}_{k\left( j \right)}}} \right) - D\left( {{{\hat x}_{k\left( {j + 1} \right)}},{{\hat x}_{k\left( j \right)}}} \right) + < \\ \nabla h\left( {{{\hat x}_{k\left( j \right)}}} \right) - \nabla h\left( {{{\hat x}_{k\left( {j + 1} \right)}}} \right),z - {{\hat x}_{k\left( {j + 1} \right)}} > = D\left( {z,{{\hat x}_{k\left( j \right)}}} \right) - \\ D\left( {{{\hat x}_{k\left( {j + 1} \right)}},{{\hat x}_{k\left( j \right)}}} \right) + {\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}} < {{\hat g}_{i\left( j \right)}},z - {{\hat x}_{k\left( {j + 1} \right)}} > \le \\ D\left( {z,{{\hat x}_{k\left( j \right)}}} \right) - D\left( {{{\hat x}_{k\left( {j + 1} \right)}},{{\hat x}_{k\left( j \right)}}} \right) + {\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}}\left( {f\left( z \right) - } \right.\\ \left. {f\left( {{{\hat x}_{k\left( j \right)}}} \right) + {{\hat e}_{i\left( j \right)}}} \right) + {\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}} < {{\hat g}_{i\left( j \right)}},{{\hat x}_{k\left( j \right)}} - {{\hat x}_{k\left( {j + 1} \right)}} > = \\ D\left( {z,{{\hat x}_{k\left( j \right)}}} \right) - D\left( {{{\hat x}_{k\left( {j + 1} \right)}},{{\hat x}_{k\left( j \right)}}} \right) + {\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}}\left( {f\left( z \right) - } \right.\\ \left. {f\left( {{{\hat x}_{k\left( j \right)}}} \right) + {{\hat e}_{i\left( j \right)}}} \right) + < \nabla h\left( {{{\hat x}_{k\left( j \right)}}} \right) - \nabla h\left( {{{\hat x}_{k\left( {j + 1} \right)}}} \right),{{\hat x}_{k\left( j \right)}} - \\ {{\hat x}_{k\left( {j + 1} \right)}} > \le D\left( {z,{{\hat x}_{k\left( j \right)}}} \right) + {\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}}\left( {\frac{1}{{{\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}}}} < } \right.\\ \nabla h\left( {{{\hat x}_{k\left( j \right)}}} \right) - \nabla h\left( {{{\hat x}_{k\left( {j + 1} \right)}}} \right),{{\hat x}_{k\left( j \right)}} - {{\hat x}_{k\left( {j + 1} \right)}} > - \\ \left. {\frac{1}{{{\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}}}}D\left( {{{\hat x}_{k\left( {j + 1} \right)}},{{\hat x}_{k\left( j \right)}}} \right) - \zeta + {{\hat e}_{i\left( j \right)}}} \right). \end{array} $ |
由公式(2.12), 可得
$ \begin{array}{l} \frac{1}{{{\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}}}} < \nabla h\left( {{{\hat x}_{k\left( j \right)}}} \right) - \nabla h\left( {{{\hat x}_{k\left( {j + 1} \right)}}} \right),{{\hat x}_{k\left( j \right)}} - \\ {{\hat x}_{k\left( {j + 1} \right)}} > - \frac{1}{{{\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}}}}D\left( {{{\hat x}_{k\left( {j + 1} \right)}},{{\hat x}_{k\left( j \right)}}} \right) + {{\hat e}_{i\left( j \right)}} \to 0. \end{array} $ |
因此存在正整数q使得
$ \begin{array}{l} D\left( {z,{{\hat x}_{k\left( {j + 1} \right)}}} \right) \le D\left( {z,{{\hat x}_{k\left( j \right)}}} \right) - \frac{\zeta }{2}{\tau _{i\left( j \right)}}{\mu _{i\left( j \right)}},\\ \forall j \ge q. \end{array} $ |
对上式求和有0≤D(z,
$ \sum\limits_{p = q}^{ + \infty } {{\tau _{i\left( p \right)}}{\mu _{i\left( p \right)}}} \le \frac{{2D\left( {z,{{\hat x}_{k\left( q \right)}}} \right)}}{\zeta } < + \infty , $ |
与公式(2.11)矛盾, 所以{f(
设x*是{
[1] |
袁功林, 韦增欣. 一个新的BFGS信赖域算法[J]. 广西科学, 2004, 11(3): 195-196. YUAN G L, WEI Z X. A new BFGS trust region algorithm[J]. Guangxi Sciences, 2004, 11(3): 195-196. |
[2] |
张秀军, 徐安农. 一种新的非线性共轭梯度法的全局收敛性[J]. 广西科学, 2005, 12(4): 282-283. ZHANG X J, XU A N. Global convergence properties of a new class of nonlinear conjugate gradient methods[J]. Guangxi Sciences, 2005, 12(4): 282-283. |
[3] |
韦增欣, 谢品杰, 顾能柱. 一类拟牛顿算法的收敛性[J]. 广西科学, 2006, 13(4): 282-287. WEI Z X, XIE P J, GU N Z. Convergence properties of a class of quasi-Newton algorithm[J]. Guangxi Sciences, 2006, 13(4): 282-287. DOI:10.3969/j.issn.1005-9164.2006.04.013 |
[4] |
BAGIROV A M, UGON J, MIRZAYEVA H G. Nonsmooth optimization algorithm for solving clusterwise linear regression problems[J]. Journal of Optimization Theory and Applications, 2015, 164(3): 755-780. DOI:10.1007/s10957-014-0566-y |
[5] |
JUNG M, KANG M. Efficient nonsmooth nonconvex optimization for image restoration and segmentation[J]. Journal of Scientific Computing, 2015, 62(2): 336-370. DOI:10.1007/s10915-014-9860-y |
[6] |
YU J, VISHWANATHAN S V N, GVNTER S, et al. A quasi-newton approach to nonsmooth convex pptimization problems in machine learning[J]. Journal of Machine Learning Research, 2010, 11(2): 1145-1200. |
[7] |
MÄKELÄ M. Survey of bundle methods for nonsmooth optimization[J]. Optimization Methods and Software, 2002, 17(1): 1-29. DOI:10.1080/10556780290027828 |
[8] |
唐春明, 简金宝. 非光滑优化的强次可行方向邻近点束求解方法[J]. 广西科学, 2014, 21(3): 283-286. TANG C M, JIAN J B. A Proximal bundle method of strongly sub-feasible directions for nonsmooth optimization[J]. Guangxi Sciences, 2014, 21(3): 283-286. |
[9] |
唐春明, 律金曼. 基于非精确数据的非光滑优化强次可行方向法[J]. 广西科学, 2016, 23(5): 404-408. TANG C M, LU J M. Strongly sub-feasible direction method with inexact data for nonsmooth optimization[J]. Guangxi Sciences, 2016, 23(5): 404-408. |
[10] |
KIWIEL K C. A proximal bundle method with approximate subgradient linearizations[J]. Siam Journal on Optimization, 2006, 16(4): 1007-1023. DOI:10.1137/040603929 |
[11] |
LAN G. Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization[J]. Mathematical Programming:Ser A, 2015(149): 1-45. |
[12] |
KIWIEL K C. An ellipsoid trust region bundle method for nonsmooth convex minimization[J]. Siam Journal on Control and Optimization, 1989, 27(4): 737-757. DOI:10.1137/0327039 |
[13] |
DE OLIVEIRA W, SOLODOV M. A doubly stabilized bundle method for nonsmooth convex optimization[J]. Mathematical Programming, 2016, 156(1/2): 125-159. |
[14] |
沈洁, 李娜, 田佳茜. 双稳定束方法以及收敛性分析[J]. 沈阳师范大学学报:自然科学版, 2015, 33(2): 177-180. SHEN J, LI N, TIAN J Q. Doubly stabilized bundle method and its convergence[J]. Journal of Shenyang Normal University:Natural Science Edition, 2015, 33(2): 177-180. |
[15] |
KIWIEL K C. Proximal minimization methods with generalized Bregman functions[J]. SIAM Journal on Control and Optimization, 1997, 35(4): 1142-1168. DOI:10.1137/S0363012995281742 |
[16] |
KIWIEL K C. A bundle Bregman proximal method for convex nondifferentiable minimization[J]. Mathematical Programming, 1999, 85(2): 241-258. DOI:10.1007/s101070050056 |
[17] |
CENSOR Y, LENT A. An iterative row-action method for interval convex programming[J]. Journal of Optimization Theory and Applications, 1981, 34(3): 321-353. DOI:10.1007/BF00934676 |
[18] |
NESTEROV Y. Introductory lectures on convex optimization:A basic course[M]. New York: Springer US, 2004.
|