引用本文: |
-
张义丰,李孟国,施凌.天津浮式LNG码头工程防波堤长度的防浪效果数值模拟研究[J].广西科学院学报,2014,30(3):152-155. [点击复制]
- ZHANG Yi-feng,LI Meng-guo,SHI Ling.A Numerical Simulated Study on Wave Protection Effects of Breakwater's Lengths of the Floating LNG Wharf Engineering in Tianjin[J].Journal of Guangxi Academy of Sciences,2014,30(3):152-155. [点击复制]
|
|
摘要: |
[目的]为了解规划建设的北防波堤对工程水域的波浪掩护情况。[方法]采用基于Boussinesq方程的波浪数学模型对不同长度防波堤的防浪效果进行模拟研究,分别对重现期50年和10年一遇波浪进行计算。[结果]防波堤建设后,影响港内波浪的主要为E向和ESE向。在设计高水位、50年一遇波浪作用下,北防波堤建设长度为2972m时,H1%波高最大值约为4.17m;10年一遇波浪作用下,北防波堤建设长度为2165m时,H1%最大值约为4.19m。[结论]两个重现期波浪作用下,防波堤分别需建设2972m和2565m以满足港内波浪掩护要求。 |
关键词: 防波堤 波浪 数学模型 Boussinesq方程 |
DOI: |
投稿时间:2014-05-31修订日期:2014-07-01 |
基金项目:水文水资源与水利工程科学国家重点实验室开放基金项目(2013491611),国家自然科学基金项目(41306034)资助。 |
|
A Numerical Simulated Study on Wave Protection Effects of Breakwater's Lengths of the Floating LNG Wharf Engineering in Tianjin |
ZHANG Yi-feng1,2, LI Meng-guo2, SHI Ling3
|
(1.The State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, Jiangsu, 210098, China;2.Tianjin Research Institute for Water Transport Engineering, M. O. T., Tianjin, 300456, China;3.Water Transport Planning and Design Co,. Ltd, China Communications Construction Company Limited, Beijing, 100007, China) |
Abstract: |
[Objective] To investigate the wave protection of the planning north breakwater,[Methods] A numerical wave model basing on the Boussinesq equation is applied to simulate wave protection effects of different lengths of the breakwaters.Design high water level(DHW) and wave return periods(WRP) of 50a and 10a are used in the simulations.[Results] It shows that under the computational condition of design high water level and wave return periods of 50a,the maximum H1% is 4.17m when the breakwater is 2972m.The maximum H1% is 4.19m when the breakwater is 2165m with the return period of 10a.[Conclusion] Under the two different wave return periods,breakwater needs to be at least 2792m and 2565m to satisfy the requirement of wave protection in the harbor area. |
Key words: breakwater wave numerical model Boussinesq equation |