引用本文: |
-
苏文龙,罗海鹏,黎贞崇.8个经典4色Ramsey数的新下界[J].广西科学院学报,1999,(1):15-21. [点击复制]
- Su Wenlong,Luo Haipeng,Li Zhenchong.New Lower Bounds of Eight Classical 4-color Ramsey Numbers[J].Journal of Guangxi Academy of Sciences,1999,(1):15-21. [点击复制]
|
|
|
|
本文已被:浏览 364次 下载 431次 |
码上扫一扫! |
8个经典4色Ramsey数的新下界 |
苏文龙1, 罗海鹏2, 黎贞崇2
|
|
(1.广西计算中心, 南宁 530022;2.广西科学院, 南宁 530031) |
|
摘要: |
提出了计算经典多色Ramsey数R(q1,q2,…,qn)下界的一个算法,得到8个新的下界:R(3,3,3,11)≥314,R(3,3,3,12)≥354,R(3,3,3,13)≥432,R(3,3,3,14)≥462,R(3,3,3,15)≥522,R(3,3,3,16)≥618,R(3,3,3,17)≥674,R(3,3,3,18)≥770. |
关键词: 多色Ramsey数 下界 循环图 算法 |
DOI: |
投稿时间:1998-10-12 |
基金项目:广西科学基金(桂科回字9B1743) |
|
New Lower Bounds of Eight Classical 4-color Ramsey Numbers |
Su Wenlong1, Luo Haipeng2, Li Zhenchong2
|
(1.Guangxi Computer Center, Nanning, 530022;2.Guangxi Academy of Sciences, Nanning, 530031) |
Abstract: |
An algorithm to compute lower bounds of classical multicolor Ramsey numbers R(q1,q2,…,qn) was presented. Eight new lower bounds were obtained:R(3,3,3,11) ≥ 314,R(3,3,3,12) ≥ 354,R(3,3,3,13) ≥ 432,R(3,3,3,14) ≥ 462,R(3,3,3,15) ≥ 522,R(3,3,3,16) ≥ 618,R(3,3,3,17) ≥ 674,R(3,3,3,18) ≥ 770. |
Key words: multicolor Ramsey number lower bound circulant graphs algorithm |
|
|
|
|
|