引用本文
  • 罗海鹏,苏文龙.经典三色Ramsey数R(3,3,11)的新下界[J].广西科学院学报,1998,(3):1-3.    [点击复制]
  • Luo Haipeng,Su Wenlong.New Lower Bound of Classical Three-color Ramsey Number R(3,3,11)[J].Journal of Guangxi Academy of Sciences,1998,(3):1-3.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 267次   下载 320 本文二维码信息
码上扫一扫!
经典三色Ramsey数R(3,3,11)的新下界
罗海鹏1, 苏文龙2
0
(1.广西科学院, 南宁 530031;2.广西计算中心, 南宁 530022)
摘要:
构造了一个107个顶点的素数阶循环图.通过计算机验证了这个图中既没有第1色的3点团,也没有第2色的3点团,也没有第3色的11点团.从而得到了一个经典三色Ramsey数的新下界:R(3,3,11)≥ 108.
关键词:  Ramsey数  下界  素数阶循环图
DOI:
投稿时间:1998-03-11
基金项目:广西自然科学基金
New Lower Bound of Classical Three-color Ramsey Number R(3,3,11)
Luo Haipeng1, Su Wenlong2
(1.Guangxi Academy of Sciences, Nanning, 530031;2.Guangxi Computer Centre, Nanning, 530022)
Abstract:
A new prime order cyclic graph with 107 vertices was structured.By computer it was verified that the graph contains neither first color 3-point clique K3, nor second color 3-point clique K3,and nor third color 11-point clique K11. So a new lower bound of classical Ramsey number was obtained:R(3,3,11) ≥ 108.
Key words:  Ramsey number  lower bound  prime order cyclic graph

用微信扫一扫

用微信扫一扫