引用本文: |
-
罗海鹏,苏文龙.经典三色Ramsey数R(3,3,11)的新下界[J].广西科学院学报,1998,(3):1-3. [点击复制]
- Luo Haipeng,Su Wenlong.New Lower Bound of Classical Three-color Ramsey Number R(3,3,11)[J].Journal of Guangxi Academy of Sciences,1998,(3):1-3. [点击复制]
|
|
摘要: |
构造了一个107个顶点的素数阶循环图.通过计算机验证了这个图中既没有第1色的3点团,也没有第2色的3点团,也没有第3色的11点团.从而得到了一个经典三色Ramsey数的新下界:R(3,3,11)≥ 108. |
关键词: Ramsey数 下界 素数阶循环图 |
DOI: |
投稿时间:1998-03-11 |
基金项目:广西自然科学基金 |
|
New Lower Bound of Classical Three-color Ramsey Number R(3,3,11) |
Luo Haipeng1, Su Wenlong2
|
(1.Guangxi Academy of Sciences, Nanning, 530031;2.Guangxi Computer Centre, Nanning, 530022) |
Abstract: |
A new prime order cyclic graph with 107 vertices was structured.By computer it was verified that the graph contains neither first color 3-point clique K3, nor second color 3-point clique K3,and nor third color 11-point clique K11. So a new lower bound of classical Ramsey number was obtained:R(3,3,11) ≥ 108. |
Key words: Ramsey number lower bound prime order cyclic graph |