引用本文: |
-
倪黎,茹凯,韦煜明.四阶两点边值问题三解的存在性[J].广西科学,2013,20(3):264-266. [点击复制]
- NI Li,RU Kai,WEI Yu-ming.Three Solutions for Four-order Second-point Boundary Value Problems[J].Guangxi Sciences,2013,20(3):264-266. [点击复制]
|
|
摘要: |
利用上下解方法和Leray-Schauder度理论讨论一类四阶两点边值问题的三解性问题,给出该问题存在三个解的一个充分条件. |
关键词: 边值问题 上下解方法 Leray-Schauder度理论 |
DOI: |
投稿时间:2013-02-12修订日期:2013-04-18 |
基金项目:广西教育厅科研项目(201012MS025);广西壮族自治区研究生教育创新计划项目(2011106020701M37)资助。 |
|
Three Solutions for Four-order Second-point Boundary Value Problems |
NI Li1,2, RU Kai1,2, WEI Yu-ming1
|
(1.School of Mathematical Science, Guangxi Normal University, Guilin, Guangxi, 541004, China;2.Department of Mathematics and Computer Science, Tongren University, Tongren, Guizhou, 554300, China) |
Abstract: |
The lower and upper solutions and Leray-Schauder degree theory were used to study a kind of four-order second-point boundary value problems, and a sufficient condition for the existence of three solutions was given. |
Key words: boundary value problems lower and upper solutions Leray-Schauder degree theory |