引用本文
  • 卢景苹.一类四次多项式系统原点的极限环分支[J].广西科学,2013,20(2):85-87.    [点击复制]
  • LU Jing-ping.The Bifurcation of Limit Cycles for a Quartic Polynomial System[J].Guangxi Sciences,2013,20(2):85-87.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 405次   下载 423 本文二维码信息
码上扫一扫!
一类四次多项式系统原点的极限环分支
卢景苹
0
(广西民族师范学院数学与计算机科学系, 广西崇左 532200)
摘要:
给出一类四次多项式系统原点的前8个奇点量,由奇点量导出焦点量,得到该系统原点成为8阶细焦点的条件,证明该系统从原点可以分支出8个极限环.
关键词:  四次多项式系统  奇点量  焦点量  极限环
DOI:
投稿时间:2012-12-22修订日期:2013-02-27
基金项目:国家自然科学基金项目(10961011),广西教育厅高校科研项目(201204LX482)资助。
The Bifurcation of Limit Cycles for a Quartic Polynomial System
LU Jing-ping
(Department of Mathematics and Computer Science, Guangxi Normal University for Nationalities, Chongzuo, Guangxi, 532200, China)
Abstract:
The bifurcation of limit cycles from a weak focal is investigated for a quartic polynomial system. The first 8 singular point values are given at the origin of system,and the focal values can be derived from the singular points, then the conditions that the origin is an 8-order weak focal is obtained. Finally, it is proved that this system has 8 limit cycles in the neighborhood of the origin.
Key words:  quartic polynomial system  singular point value  focal value  limit cycle

用微信扫一扫

用微信扫一扫