摘要: |
利用Leray-Schauder度理论,获得具有偏差变元的Lienard方程x″(t)+f1(t,x(t))x'(t)+f2(x(t))x'((t))2+g(t,x(t-τ(t)))=p(t)反周期解存在唯一性的充分条件. |
关键词: Lienard方程 偏差变元 反周期解 Leray-Schauder度 |
DOI: |
投稿时间:2009-10-23 |
基金项目: |
|
Existence and Uniqueness of Anti-Periodic Solutions for a Class of Lienard-type Equation with a Deviating Argument |
LUO Fang-qiong
|
(Department of Mathematics and Computer Science, Liuzhou Teachers College, Liuzhou, Guangxi, 545004, China) |
Abstract: |
By employing Leray-Schauder degree theorem, some new sufficient conditions of the existence and uniqueness of Anti-periodic solutions for Lienard-type equation with a deviating argument of the form x″ (t)+f1 (t, x (t))x' (t)+f2 (t, x (t))x' ((t))2+g (t, x (t-τ (t)))=p (t) are obtained. |
Key words: Lienard-type equation deviating arguments anti-periodic solutions Leray-Schauder degree |