引用本文: |
-
唐高华,李香妮,赵伟,苏华东.模n高斯整环Zn[i]的零因子图的类数[J].广西科学,2010,17(1):8-10. [点击复制]
- TANG Gao-hua,LI Xiang-ni,ZHAO Wei,SU Hua-dong.The Genus of the Zero-divisor Graph of Zn[i][J].Guangxi Sciences,2010,17(1):8-10. [点击复制]
|
|
摘要: |
完全决定了模n高斯整环Zn[i]的零因子图的类数分别为0,1,2,3,4,5的情况. |
关键词: 图的类数 零因子图 模n高斯整数环 |
DOI: |
投稿时间:2009-12-09 |
基金项目:This research was supported by the National Natural Science Foundation of China (10771095),the Guangxi Science Foundation (0832107,0991102),the Scientific Research Foundation of Guangxi Educational Committee (200707LX233). |
|
The Genus of the Zero-divisor Graph of Zn[i] |
TANG Gao-hua, LI Xiang-ni, ZHAO Wei, SU Hua-dong
|
(School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, China) |
Abstract: |
The positive integers n such that the genus of the zero-divisor graph of Zn[i] is 0, 1, 2, 3, 4, or 5 are completely determined. |
Key words: genus of a graph zero-divisor graph the ring of Gaussian integers modulo n |