引用本文
  • 唐高华,李香妮,赵伟,苏华东.模n高斯整环Zn[i]的零因子图的类数[J].广西科学,2010,17(1):8-10.    [点击复制]
  • TANG Gao-hua,LI Xiang-ni,ZHAO Wei,SU Hua-dong.The Genus of the Zero-divisor Graph of Zn[i][J].Guangxi Sciences,2010,17(1):8-10.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 344次   下载 361 本文二维码信息
码上扫一扫!
n高斯整环Zn[i]的零因子图的类数
唐高华, 李香妮, 赵伟, 苏华东
0
(广西师范学院数学科学学院, 广西南宁 530023)
摘要:
完全决定了模n高斯整环Zn[i]的零因子图的类数分别为0,1,2,3,4,5的情况.
关键词:  图的类数  零因子图  n高斯整数环
DOI:
投稿时间:2009-12-09
基金项目:This research was supported by the National Natural Science Foundation of China (10771095),the Guangxi Science Foundation (0832107,0991102),the Scientific Research Foundation of Guangxi Educational Committee (200707LX233).
The Genus of the Zero-divisor Graph of Zn[i]
TANG Gao-hua, LI Xiang-ni, ZHAO Wei, SU Hua-dong
(School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, China)
Abstract:
The positive integers n such that the genus of the zero-divisor graph of Zn[i] is 0, 1, 2, 3, 4, or 5 are completely determined.
Key words:  genus of a graph  zero-divisor graph  the ring of Gaussian integers modulo n

用微信扫一扫

用微信扫一扫