引用本文
  • 陆伟平,刘焕文.二元三次样条空间S31(△W)的Hermite插值[J].广西科学,2008,15(4):374-380.    [点击复制]
  • LU Wei-ping,LIU Huan-wen.Hermite Interpolation on Bivariate Cubic Spline Space S31 (△W)[J].Guangxi Sciences,2008,15(4):374-380.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 351次   下载 403 本文二维码信息
码上扫一扫!
二元三次样条空间S31(△W)的Hermite插值
陆伟平1,2, 刘焕文1,2
0
(1. 广西经济管理干部学院, 广西南宁 530007;2.
2. 广西民族大学数学与计算机科学学院, 广西南宁 530006)
摘要:
利用B-网坐标方法,讨论Wang加密三角剖分△W上二元三次样条空间S31(△W)的Hermite插值,证明了插值的适定性,并给出S31(△W)上具有局部支集的基函数.
关键词:  加密三角剖分  二元三次样条函数  Hermite插值  局部基
DOI:
投稿时间:2008-01-27
基金项目:广西自然科学基金(批准号:0575029);广西民族大学研究生教育创新项目(gxun-chx0747)资助
Hermite Interpolation on Bivariate Cubic Spline Space S31 (△W)
LU Wei-ping1,2, LIU Huan-wen1,2
(1. Guangxi Economic Management Cadre College, Nanning, Guangxi, 530007, China;2.
2. College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning, Guangxi, 530006, China)
Abstract:
By using technique of Bézier-method, Hermite interpolation schemes are constructed based on cubic splines on Wang's refined triangulations. The existence and the uniqueness of the interpolation are discussed. The interpolant has local support and explicit representation.
Key words:  refined triangulation  bivariate cubic spline  Hermite interpolation  local basis

用微信扫一扫

用微信扫一扫