引用本文
  • 唐国吉,赵康生.混合变分不等式的一类迭代算法[J].广西科学,2008,15(4):371-373.    [点击复制]
  • TANG Guo-ji,ZHAO Kang-sheng.Some Iterative Algorithms for Mixed Variational Inequalities[J].Guangxi Sciences,2008,15(4):371-373.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 328次   下载 376 本文二维码信息
码上扫一扫!
混合变分不等式的一类迭代算法
唐国吉1, 赵康生2
0
(1.广西民族大学数学与计算机科学学院, 广西南宁 530006;2.南昌航空大学数学与信息科学学院, 江西南昌 330063)
摘要:
提出求解混合变分不等式的一个新的迭代算法1,并且当f是非空闭凸集K上的指示函数时,得到求解经典变分不等式的迭代算法2.对于算法1,在假设混合变分不等式的解集非空及不需要limn→∞Un=0的条件下,证明迭代序列{un}收敛于混变分不等式的唯一解.
关键词:  变分不等式  Ishikawa迭代  Lipschitz连续
DOI:
投稿时间:2008-04-18
基金项目:广西民族大学青年科学基金项目资助
Some Iterative Algorithms for Mixed Variational Inequalities
TANG Guo-ji1, ZHAO Kang-sheng2
(1.College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning, Guangxi, 530006, China;2.College of Mathematics and Information Science, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China)
Abstract:
A new iterative algorithm 1 for solving mixed variational inequalities is proposed, and when f is the indicator function over a closed convex set K, we obtain algorithm 2 for solving classical variational inequalities. For algorithm 1 where limn→∞Un=0 is removed, suppose the solution set is noempty. That the iterative sequeuce {un}converges to the unique solution of mixed variational inequalities is proved.
Key words:  variational inequalities  Ishikawa iteration  Lipschitz continuous

用微信扫一扫

用微信扫一扫