引用本文
  • 梁德辉,黄文韬,肖占兵.一类六对称五次多项式微分系统的小振幅极限环分支[J].广西科学,2008,15(3):247-249.    [点击复制]
  • LIANG De-hui,HUANG Wen-tao,XIAO Zhan-bing.Small Limit Cycles Bifurcating from Fine Focus Points in Quintic Order Z6-equivariant Polynomial System[J].Guangxi Sciences,2008,15(3):247-249.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 402次   下载 467 本文二维码信息
码上扫一扫!
一类六对称五次多项式微分系统的小振幅极限环分支
梁德辉, 黄文韬, 肖占兵
0
(桂林电子科技大学计算科学与数学学院, 广西桂林 541004)
摘要:
研究一类六对称五次多项式微分系统的小振幅极限环分支问题,给出该系统奇点量的递推公式和系统的焦点量,并推导出这类六对称五次多项式系统在6个细焦点可以分支出12个小振幅极限环.
关键词:  微分系统  细焦点  奇点量  极限环分支
DOI:
投稿时间:2007-07-13修订日期:2007-07-27
基金项目:广西自然科学基金项目(0575092)资助
Small Limit Cycles Bifurcating from Fine Focus Points in Quintic Order Z6-equivariant Polynomial System
LIANG De-hui, HUANG Wen-tao, XIAO Zhan-bing
(Department of Computing Science and Mathematics, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China)
Abstract:
In this work, we study bifurcation of small limit cycles for a class of quintic order Z6-equivariant polynomial system, and the recursive formula of computing singular point values and the focus point values of this system are getten.It shows that this system allows the appearance of twelve limit cycles in six fine focus points.
Key words:  differential system  fine focus point  singular point value  bifurcation of limit cycles

用微信扫一扫

用微信扫一扫