引用本文
  • 李祖雄,黄健民,陈飞.具有脉冲效应的Holling Ⅲ系统的动力行为[J].广西科学,2006,13(4):255-260.    [点击复制]
  • LI Zu-xiong,HUANG Jian-min,CHEN Fei.Analysis of a Holling Type Ⅲ Predator System with Impulsive Effect[J].Guangxi Sciences,2006,13(4):255-260.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 342次   下载 343 本文二维码信息
码上扫一扫!
具有脉冲效应的Holling Ⅲ系统的动力行为
李祖雄, 黄健民, 陈飞
0
(广西师范大学数学科学学院, 广西桂林 541004)
摘要:
通过周期性释放天敌和化学控制的综合害虫管理(IPM)改进捕食者具有Holling型功能性反应系统:{(dy(t)/dt)=-cy(t)+(kαx2(t)y(t)/x2(t)+β2).(dx(t)/dt)=ax(t)-bx2(t)-(αx2(t)y(t)/x2(t)+β2),
得到一个新的系统:{(dy(t)/dt)=-cy(t)+(kαx2(t)y(t)/x2(t)+β2).(dx(t)/dt)=ax(t)-bx2(t)-(αx2(t)y(t)/x2(t)+β2),}tnT,{Δy(t)=-p2y(t)+q.Δx(t)=-p1x(t),}t=nT.给出当q>0,0≤p1<1,0≤p2<1时,新系统的害虫周期全局渐近稳定性与新系统的持续生存条件.研究当q>0,0≤p1<1,0≤p2<1时,新系统正周期解的存在性和当q≡0,0<p1<1,0≤p2<1时,无捕食者周期解的存在性和稳定性.
关键词:  HollingⅢ类功能反应  脉冲效应  全局渐近稳定性  持续生存  分支
DOI:
投稿时间:2006-04-14修订日期:2006-06-23
基金项目:国家自然科学基金(10461002)资助
Analysis of a Holling Type Ⅲ Predator System with Impulsive Effect
LI Zu-xiong, HUANG Jian-min, CHEN Fei
(Mathematics Science College, Guangxi Normal University, Guilin, Guangxi, 541004, China)
Abstract:
By introducing a constant periodic releasing natural enemies and integrated pest management,we devolop the system where the predator has Holling type Ⅲ functional response:{(dy(t)/dt)=-cy(t)+(kαx2(t)y(t)/x2(t)+β2).(dx(t)/dt)=ax(t)-bx2(t)-(αx2(t)y(t)/x2(t)+β2),
At the sametime,we obtain a new system:{(dy(t)/dt)=-cy(t)+(kαx2(t)y(t)/x2(t)+β2).(dx(t)/dt)=ax(t)-bx2(t)-(αx2(t)y(t)/x2(t)+β2),}tnT,{Δy(t)=-p2y(t)+q.Δx(t)=-p1x(t),}t=nT.When q>0,0 ≤ p1<1 and 0 ≤ p2<1,we obtain conditions for global asymptotic stability of pest-eradication periodic solution and permanence of the new system,and also obtain the existence of a postive periodic solution of the new system.Finally,we discuss the existence and stability of the predator-free periodic solution.
Key words:  functional response of Holling type Ⅲ  impulsive effect  globally asymptotical stability  permanence  bifurcation

用微信扫一扫

用微信扫一扫