引用本文
  • 吴树宏.整数矩阵方程Am=dI+λJ的通解[J].广西科学,2006,13(4):245-246.    [点击复制]
  • WU Shu-hong.General Solution to the Integer Matrix Equation Am=dI+λJ[J].Guangxi Sciences,2006,13(4):245-246.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 356次   下载 269 本文二维码信息
码上扫一扫!
整数矩阵方程Am=dI+λJ的通解
吴树宏
0
(武汉理工大学理学院数学系, 湖北武汉 430070)
摘要:
给出整数矩阵方程Am=dI+λJ的通解,即:当d≠0时,必有(d+λn)1/m-d1/mn的整数倍且A=d1/mI+1/n[(d+λn)1/m-d1/m]J,当d=0时,其通解为A=1/n(λn)1/meeT+1/t1≤jl;kj≥2mj=1kj-1 ζj,mj+1ηj,mjT.
关键词:  矩阵方程  整数  通解
DOI:
投稿时间:2006-09-13
基金项目:
General Solution to the Integer Matrix Equation Am=dI+λJ
WU Shu-hong
(Department of Mathematics, School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China)
Abstract:
In this paper,we give general solution of integer matrix equation Am=dI+λJ,i.e.,in the case of d≠0,(d+λn)1/m-d1/m there must be integer multiple of n and A=d1/mI+1/n[(d+λn)1/m-d1/m]J;in the case of d=0,A=1/n(λn)1/meeT+1/t1 ≤ jl;kj ≥ 2mj=1kj-1 ζj,mj+1ηj,mjT.
Key words:  matrix equation  integer  general solution

用微信扫一扫

用微信扫一扫