摘要: |
给出整数矩阵方程Am=dI+λJ的通解,即:当d≠0时,必有(d+λn)1/m-d1/m为n的整数倍且A=d1/mI+1/n[(d+λn)1/m-d1/m]J,当d=0时,其通解为A=1/n(λn)1/meeT+1/t∑1≤j≤l;kj≥2 ∑mj=1kj-1 ζj,mj+1ηj,mjT. |
关键词: 矩阵方程 整数 通解 |
DOI: |
投稿时间:2006-09-13 |
基金项目: |
|
General Solution to the Integer Matrix Equation Am=dI+λJ |
WU Shu-hong
|
(Department of Mathematics, School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China) |
Abstract: |
In this paper,we give general solution of integer matrix equation Am=dI+λJ,i.e.,in the case of d≠0,(d+λn)1/m-d1/m there must be integer multiple of n and A=d1/mI+1/n[(d+λn)1/m-d1/m]J;in the case of d=0,A=1/n(λn)1/meeT+1/t∑1 ≤ j ≤ l;kj ≥ 2 ∑mj=1kj-1 ζj,mj+1ηj,mjT. |
Key words: matrix equation integer general solution |