引用本文: |
-
晏燕雄,陈贵云,何立官.最高阶元素个数为68p的有限群[J].广西科学,2005,12(4):241-245. [点击复制]
- Yan Yanxiong,Chen Guiyun,He Liguan.Finite Groups with 68p Elements of Maximal Order[J].Guangxi Sciences,2005,12(4):241-245. [点击复制]
|
|
摘要: |
讨论群的最高阶元素个数为68p的有限群,得到:如果G是最高阶元素个数为M(G)=68p的有限群,其中素数p>7,则G是可解群. |
关键词: 有限群 可解群 元素的阶 |
DOI: |
投稿时间:2005-04-18修订日期:2005-05-23 |
基金项目:国家自然科学基金项目(10171074)、教育部重点项目和教育部优秀青年教师资助计划联合资助。 |
|
Finite Groups with 68p Elements of Maximal Order |
Yan Yanxiong, Chen Guiyun, He Liguan
|
(School of Mathematics and Finance, Southwest China Normal University, Chongqing, 400715, China) |
Abstract: |
We discuss the finite groups with 68p elements of maximal order,and get a theorem as follows:Suppose G is a finite group with|M(G)|=68p elements of maximal order,where p is a prime and p>7,then G is solvable. |
Key words: finite groups solvable groups the order of elements |