引用本文
  • 陈武华.一个退化的非线性抛物型方程的行波解[J].广西科学,2001,8(3):165-167.    [点击复制]
  • Chen Wuhua.Travelling Wave Solution for a Nonlinear Degenerate Parabolic Equation[J].Guangxi Sciences,2001,8(3):165-167.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 391次   下载 415 本文二维码信息
码上扫一扫!
一个退化的非线性抛物型方程的行波解
陈武华
0
(广西民族学院数学系, 南宁市西乡塘 530006)
摘要:
讨论退化的抛物型方程(um/m)t=(k(u)ux)x+ung(u)的行波解问题.其中n≥0,m >0,g:[0,1]→R+,g(1)=0且存在θ∈(0,1)使得g(u)≡ 0,u∈[0,θ),g(u)>0,u∈(θ,1),g(u)在[θ,1]上Lipschitz连续.证明存在唯一一个正波速的波前解,其中当0 < m < 1时,该波前解为有限行波解,推广了文献[5]的相应结果.
关键词:  退化的抛物型方程  波前解  有限行波解
DOI:
投稿时间:2000-10-30
基金项目:
Travelling Wave Solution for a Nonlinear Degenerate Parabolic Equation
Chen Wuhua
(Dept. of Math., Guangxi Univ. for Nationalities, Xixiangtang, Nanning, Guangxi, 530006, China)
Abstract:
Consider the travelling wave solution problem for the degenerate parabolic equation (um/m)t=(k(u)ux)x+ung(u), where n ≥ 0,m >0,g:[0,1]→R+,g(1)=0 and exists θ∈(0,1) such that g(u)≡ 0,u∈[0,θ),g(u) >0,u∈ (θ,1),g(u) is Lipschitz continuous on[θ,1]. It is proven that there exists a unique travelling wave front solution with positive wave speed and the travelling wave is a finite travelling wave if 0 < m < 1, the corresponding results in Reference are extended.
Key words:  degenerate parabolic equation  travelling wave front solution  finite travelling wave solution

用微信扫一扫

用微信扫一扫