2. 广西科学院, 非粮生物质能技术全国重点实验室, 国家非粮生物质能源工程技术研究中心, 广西南宁 530007
2. National Key Laboratory of Non-Food Biomass Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
生物乙醇作为可再生能源是迄今为止最为成功的液体替代燃料,因此受到广泛关注[1-4]。目前生物乙醇的发展存在的主要问题为以传统原料为主,对非粮原料的利用处于工业化初期,面临能耗、物耗高及成本高等难题[5, 6]。纤维素乙醇作为新一代先进的非粮生物液体燃料,具备原料丰富、价格低、可再生等优势。因此,开发和利用纤维素乙醇已成为世界各国的发展趋势和必然选择[7-11],我国也不例外。为推动高效、低成本的纤维素乙醇的应用,纤维素乙醇产业已被确立为战略性新兴产业[12-14],且加快纤维素乙醇关键技术研发也被纳入《“十四五”生物经济发展规划》。纤维素乙醇产业发展面临新的机遇。
纤维素乙醇产业的重要原料是甘蔗渣,而甘蔗渣是甘蔗制糖工业重要的副产品,且来源比较集中,便于利用。据统计,2022年我国甘蔗总产量为10 338.13万吨,其中广西甘蔗产量为7 116.54万吨(广西是我国最大的食糖生产基地,多年来每年的甘蔗产量均占全国甘蔗总产量的60%左右,位居全国第一),制糖工业产生的甘蔗渣产量超过800万吨(广西甘蔗品种一般以8.5 t甘蔗产出1 t的蔗渣计)[15]。甘蔗渣主要由纤维素、半纤维素和木质素这3个成分组成,具有可再生、低成本、环境友好、生物相容、可生物降解等优点。甘蔗渣的水解产物主要是葡萄糖和木糖,其中含量第二高的是木糖。但野生型酿酒酵母(Saccharomyces cerevisiae)不能利用木糖发酵产乙醇,这成为当前纤维素乙醇实现产业化生产的主要瓶颈之一。为此,需要选育能高效利用木糖产乙醇的菌株。本文从微生物木糖代谢途径、利用木糖产乙醇的微生物、木糖产乙醇基因工程菌的构建、利用传统诱变方法改良木糖乙醇菌种等4个方面综述当前木糖产乙醇微生物的育种研究进展。
1 微生物木糖代谢途径为了能在生活环境中充分利用木糖,微生物已经进化出独特的木糖利用途径。目前已发现的木糖自然代谢途径有5种:木糖还原酶(Xylose Reductase, XR)-木糖醇脱氢酶(Xylitol Dehydrogenase, XDH)途径、木糖异构酶(Xylose Isomerase, XI)途径、α-酮戊二酸(α-Ketoglutarate, α-KG)途径、Dahms途径和磷酸酮酶(Phosphoketolase, PK)途径(图 1)[16]。上述5种途径具体的代谢过程如下。
(1) 途径一(酵母、丝状真菌)
XR-XDH途径:XR催化木糖生成木糖醇,后者经XDH催化生成木酮糖,即两步法生成木酮糖,XR、XDH分别需要辅酶NAD(P)H、NAD+。木酮糖经过磷酸化后生成5-磷酸木酮糖,后者再经戊糖磷酸途径(Pentose Phosphate Pathway, PPP)等途径,最后在无氧条件下生成乙醇。该途径存在于酵母、丝状真菌中。
(2) 途径二(细菌)
XI途径:XI催化木糖生成木酮糖,即一步法生成木酮糖,此反应不需要任何辅酶。此后生成乙醇的途径同途径一。该途径存在于细菌中。
(3) 途径三(新月柄杆菌)
α-KG途径:Stephens等[17]在新月柄杆菌(Caulobacter crescentus)中发现新的木糖代谢途径,即木糖经木糖脱氢酶xylB (需要辅酶NAD+)催化生成Xylonolactone,后者经xylC催化生成Xylonate,然后经脱水酶xylD作用脱水生成2-Keto-3-deoxy-xylonate,再经脱水、脱氢最后生成α-Ketoglutarate,进入TCA循环,在有氧条件下生成H2O和CO2。
(4) 途径四(新月柄杆菌)
Dahms途径:在途径三的基础上,2-Keto-3-deoxy-xylonate经醛缩酶催化分解为乙醇醛和丙酮酸[16, 18]。该途径存在于新月柄杆菌中。
(5) 途径五(丙酮丁醇梭菌)
PK途径:在途径二的基础上,5-磷酸木酮糖经磷酸酮酶催化分解为乙酰磷酸和甘油醛-3-磷酸[19, 20]。该途径存在于丙酮丁醇梭菌(Clostridium acetobutylicum)中。
上述5种木糖自然代谢途径中,代谢路径相对较短的是途径二、途径五,代谢路径相对较长(复杂)的是途径三。而对于微生物利用木糖产乙醇,研究人员较为关注的是途径一和途径二[16]。这两个途径相比较,途径二代谢路径更简单。
2 利用木糖产乙醇的微生物目前能利用木糖产乙醇的微生物主要有:(1)酵母,包括管囊酵母(Pachysolen tannophilus)[21]、休哈塔假丝酵母(Candida shehatae)[22]、树干毕赤酵母(Scheffersomyces stipitis, 又称Pichia stipitis)[23]、马克斯克鲁维酵母(Kluyveromyces marxianus)[24, 25]、汉逊酵母(Ogataea polymorpha)[26]以及近几年新发现的威克汉姆酵母(Wickerhamomyces sp.UFFS-CE-3.1.2)[27]、Spathaspora hagerdaliae UFMG-CM-Y303[28]、季也蒙毕赤酵母(Pichia guilliermondii)[29]、嗜油脂假丝酵母(C.oleophila)[29]、非常规酵母菌株S.passalidarum[30]等;(2)细菌,包括运动发酵单胞菌(Zymomonas mobilis)[31]、嗜热厌氧乙醇杆菌(Thermoanaerobacter ethanolicus)[32]等。此外,真菌如拟青霉(Paecilomyces sp. NF1)[33]也能利用木糖产乙醇。据统计,目前已发现超过100种微生物能利用木糖,其中大部分能产乙醇(表 1)。
菌种名称 Name of strain |
木糖/(g/L) Xylose/(g/L) |
乙醇/(%, V/V) Ethanol/(%, V/V) |
糖醇转化率/(g/g) Conversation of xylose to ethanol/(g/g) |
文献 Reference |
Paecilomyces sp. NF1 | 50 | 2.50 | 0.39 | [33] |
P. sp. NF1 | 80 | 3.99 | 0.39 | [33] |
P. sp. NF1 | 100 | 5.04 | 0.39 | [33] |
P. sp. NF1 | 150 | 7.56 | 0.39 | [33] |
P. sp. NF1 | 200 | 9.31 | 0.38 | [33] |
Pachysolen tannophilus RL-171 | 80 | 2.66 | 0.26 | [34] |
P.tannophilus RL-171 | 100 | 2.98 | 0.24 | [34] |
P.tannophilus RL-171 | 120 | 2.53 | 0.17 | [34] |
P.tannophilus NRRL-Y2460 | 20 | 0.67 | 0.26 | [35] |
P.tannophilus NRRL-Y2460 | 50 | 1.90 | 0.30 | [36] |
Candida XF217 | 50 | 2.66 | 0.42 | [37] |
C.shehatae CBIR-Y492 | 50 | 2.28 | 0.36 | [38] |
C.shehatae CBIR-Y492 | 90 | 3.32 | 0.29 | [39] |
C.tropicalis ATCC 1369 | 75 | 1.05 | 0.11 | [40] |
Pichia stipitis CBS 5576 | 50 | 2.83 | 0.45 | [41] |
P.segobiensis CBS 6857 | 20 | 0.63 | 0.25 | [42] |
P.stipitis CBS 5573(5) | 20 | 0.75 | 0.30 | [42] |
P.stipitis NRRL Y-7124 | 30 | 0.28 | [43] | |
Spathaspora passalidarum NRRL Y-27907 | 30 | 0.35 | [30] | |
Pestalotiopsis sp.XE-1 | 97.71 | 0.54 | 0.34 | [44] |
Zymomonas mobilis A3 | 100 | 5.46 | 0.45 | [45] |
Spathaspora hagerdaliae UFMG-CM-Y303 | 28.2 | 0.28-0.36 | [28] | |
S.hagerdaliae UFMG-CM-Y303 | 20.6 | 0.43 | 0.33 | [46] |
C.maltosa UFMG-CM-Y2131 | 30 | 0.44 | 0.12 | [47] |
Scheffersomyces sp.UFMG-CM-Y365 | 30 | 1.01 | 0.25 | [47] |
S.stipitis UFMG-CM-Y2303 | 30 | 1.78 | 0.42 | [47] |
S.stipitis UFMG-CM-Y2108 | 30 | 1.78 | 0.42 | [47] |
Spathaspora boniae UFMG-CM-Y306 | 30 | 0.78 | 0.19 | [47] |
S.boniae UFMG-CM-Y363 | 30 | 0.91 | 0.22 | [47] |
Sugiyamaella xylolytica UFMG-CM-Y348 | 30 | 0.61 | 0.14 | [47] |
Wickerhamomyces sp.1 UFMG-CM-Y6241 | 30 | 0.43 | 0.14 | [47] |
目前文献报道木糖产乙醇浓度最高的微生物是拟青霉,其产乙醇浓度为9.31%(V/V)[33],但发酵时间为12 d,周期太长,发酵效率低。酵母菌种中研究较多的是休哈塔假丝酵母、管囊酵母和树干毕赤酵母[48, 49],三者的木糖乙醇发酵性能(糖醇转化率,g/g)相比较,管囊酵母相对较弱,其糖醇转换率为0.17-0.30 g/g[34-36],而休哈塔假丝酵母[38, 39]次之,最强的是树干毕赤酵母,糖醇转化率为0.42-0.45 g/g[41, 47]。非常规酵母菌株方面,比如Spathaspora passalidarum NRRL Y-27907,其糖醇转化率为0.35 g/g[30],与休哈塔假丝酵母接近。细菌方面,目前较为优良的是运动发酵单胞菌,其糖醇转化率达到0.45 g/g[41]。此外,酵母菌种在酒精耐受度等方面比细菌有优势。而理想菌种具备的特征主要包括发酵周期短、糖醇转化率高等。因此,对于木糖乙醇发酵,目前最为理想的菌种是树干毕赤酵母[50-52]。
3 木糖产乙醇基因工程菌的构建目前,利用基因工程技术等手段对木糖产乙醇微生物进行改造,构建的基因工程菌的种类主要包括酿酒酵母、大肠杆菌(Escherichia coli)、运动发酵单胞菌等。
3.1 产木糖乙醇的酿酒酵母基因工程菌(1) 酿酒酵母木糖乙醇发酵途径的改造
酿酒酵母具有高产乙醇、较高乙醇耐受性等优点,但野生型酿酒酵母不能利用木糖发酵生产乙醇。为此,通过基因工程和代谢工程等方法或策略来构建高效利用多种糖类(尤其是木糖)产乙醇的酿酒酵母工程菌已成为全球各国研究人员关注的焦点和努力解决的热点问题。
第一条改造思路:主要借鉴XR-XDH途径,通过在酿酒酵母中引入XR-XDH途径相关的异源基因来构建。Amore等[53]较早开展了相关的探索,将来自树干毕赤酵母CBS5773的2个基因(木糖还原酶基因XYL1以及木糖醇脱氢酶基因XYL2) 导入宿主酿酒酵母JD2-9A中进行异源表达,宿主能检测到木糖还原酶和木糖醇脱氢酶的活性。Watanabe等[54]将毕赤酵母木糖醇脱氢酶基因和定点突变的木糖还原酶基因导入酿酒酵母中表达,重组菌乙醇产量比原始菌提高5.1%。Petschacher等[55]将C.tenuis木糖还原酶基因和Galactocandida mastotermitis木糖醇脱氢酶基因连接在酿酒酵母强启动子TDH3下游后整合至酿酒酵母基因组,重组子木糖乙醇产量提高42%。而Ho等[56]作了更进一步的研究,在酿酒酵母中同时异源表达3个基因(来自树干毕赤酵母的XYL1、XYL2基因以及木酮糖激酶基因),重组菌所产的酒精高于3个基因来源的树干毕赤酵母菌株。然而研究发现在酿酒酵母中异源表达XYL1、XYL2基因以及木酮糖激酶基因,重组菌株在木糖醇积累和乙醇产量方面表现出较大的变化,主要原因是编码木糖醇脱氢酶的XYL2基因低表达水平[57],这也是木糖高效发酵的瓶颈之一。为解决此问题,Kim等[57]在酿酒酵母工程菌株YSX3能异源表达XYL1、XYL2基因以及木酮糖激酶基因的基础上,构建过量表达树干毕赤酵母XYL2基因(利用组成型强启动子整合至核基因组上表达)的重组工程菌株YSX3-pX2,使其木糖醇积累减少,乙醇产量提高,即木糖醇产率从0.4 g/g下降至0.1 g/g,乙醇产率从0.1 g/g提高至0.3 g/g。此外,所有乙醇脱氢酶(Alcohol Dehydrogenase, ADH)基因适合于优化酵母代谢途径,而SFA1基因是ADH基因中的一种重要基因[58]。鉴于此,曹利民团队在酿酒酵母工程菌株WXY70能异源表达XYL1、XYL2基因以及木酮糖激酶基因的基础上,构建过量表达SFA1基因的重组酿酒酵母SFA1OE,该菌株发酵48 h的醪液中残留木糖含量和乙醇产量分别为1.2 g/L和53.20 g/L,而原始菌株TSH-01中分别为4.03 g/L和51.36 g/L[59],木糖利用率和乙醇产量均得到提高。
第二条改造思路:在酿酒酵母中异源表达木糖异构酶基因。由于木糖经木糖异构酶催化生成木酮糖无需任何辅酶,因此不存在胞内还原力不平衡的问题[60]。Lönn等[61]将来自嗜热栖热菌(Thermus thermophilus)的木糖异构酶基因导入酿酒酵母中表达,酶活提高8倍。王青艳等[62]将来自嗜热放线细菌(Thermobifida fusca)的木糖异构酶基因xylA连接于酵母表达载体pYES2的半乳糖诱导启动子PGAL下,得到重组质粒pYES2-xylA,用其转化酵母菌INVSc1,构建出重组菌株INVSc1-xylA,其在木糖葡萄糖共发酵实验中消耗的木糖和产生的乙醇分别比对照菌提高53.8%和36.0%。巴西盛产乙醇,其乙醇发酵水平处于国际领先水平(包括利用甘蔗糖蜜等原料),最佳的工业酿酒酵母菌种为CAT-1[63]和PE-2[64],其中CAT-1菌株是来自Fermentec公司的商业化菌种,被广泛应用于南美酒精生产企业。Coimbra等[65]将来自腔色链霉菌(Streptomyces coelicolor)的木糖异构酶基因在CAT-1菌株中进行异源表达,最后构建出重组菌株CAT-1-XIT(pRS42K: : XI)。木糖乙醇发酵132 h,重组菌株CAT-1-XIT(pRS42K: : XI)消耗74%的D-木糖,产生12.6 g/L乙醇(0.31 g/g木糖),其乙醇产率接近0.10 g/(L·h)。但异源表达的木糖异构酶的最适温度一般较高,在酵母生长所需的常温条件(如30 ℃)下酶活很低,因此,木糖乙醇发酵效率不高,需要对菌种作进一步改良。近期,南京理工大学金明杰团队通过大数据挖掘、理性改造和祖先序列重构获得了13个在酿酒酵母中有活性的木糖异构酶,并以此构建出具有高效利用木糖能力的重组酿酒酵母菌株CRD5HS,其以玉米秸秆和玉米芯为原料进行发酵,生产的燃料乙醇分别高达85.95 g/L和94.76 g/L[66]。这为今后以酿酒酵母为底盘细胞的木质纤维素生物炼制提供了思路。
第三条改造思路:在酿酒酵母中异源表达木糖异构酶基因和XR-XDH途径相关的基因。沈煜等[67]将来自嗜热栖热菌的木糖异构酶基因、酿酒酵母木酮糖激酶基因整合至酿酒酵母工业菌株NAN-227染色体中表达;Ha等[68]将粗糙脉孢菌(Neurospora crassa)的纤维糊精运输因子基因和β-半乳糖苷酶基因,树干毕赤酵母的木糖异构酶基因(原始XR及突变XRF276-1)、木糖醇脱氢酶基因和木酮糖激酶基因导入酿酒酵母,重组酵母能同步利用纤维二糖和木糖共发酵生产乙醇。
(2) 木糖运输途径的改造
酿酒酵母木糖跨膜运输主要依靠细胞膜上的HXT4、Gal2等跨膜运输因子来完成, 这些因子是高亲和力葡萄糖运输因子,但此运输过程会受到葡萄糖的强烈抑制[69]。Saloheimo等[70]从能高效代谢戊糖的里氏木霉cDNA文库中,筛选到hxt1、trxlt1等5种戊糖的运输因子基因,这5种基因共表达能促进重组子利用木糖。Leandro等[71]将中间假丝酵母同向转运因子(木糖/葡萄糖)基因导入酿酒酵母,提高木糖的跨膜运输能力。Madhavan等[72]在酵母中超表达毕赤酵母糖转运蛋白(SUT1)基因、木酮糖激酶基因以及真菌Orpinomyces木糖异构酶基因,促进木糖转运和乙醇生成。
(3) 通过其他方式的改造
Mig1和Snf1是酿酒酵母葡萄糖阻遏效应的两个关键调控因子,分别由MIG1、SNF1基因编码。王正祥团队为提高酿酒酵母同时利用葡萄糖和木糖的能力,分别对MIG1和SNF1基因进行单敲除和双敲除,发现单敲除MIG1对共利用混合糖无影响,单敲除SNF1能加快混合糖中木糖的利用且两种糖能同时被利用; 而双敲除能加快利用葡萄糖却使木糖的利用速度变慢,但由于两种糖能同时被利用,最终加快了乙醇的生成[73]。Tran等[74]利用DNA组装方法对戊糖磷酸途径的靶点基因进行过量表达,构建酿酒酵母重组菌株XUSEA,该菌株木糖消耗量和乙醇产量增加两倍,并且共发酵时间缩短一半。本团队也开展了木糖产乙醇的工业酿酒酵母菌株(野生型工业酿酒酵母菌株MF01)构建等相关工作,主要针对一些转录因子,目前取得了一定的进展。
3.2 产木糖乙醇的运动发酵单胞菌基因工程菌运动发酵单胞菌是目前唯一利用ED途径(Entner-Doudoroff pathway,ED pathway)在厌氧条件下生成乙醇的微生物, 其能高效转化己糖产乙醇,是当前乙醇发酵能力较强的细菌之一,但不能利用戊糖生产乙醇。为此,Seo等[75]和Kouvelis等[76]分别对ZM4、NCIMB 11163菌株进行全基因组测序,并公布相应的基因组序列,为后续开展相关的研究打下基础。Zhang等[77]将来自大肠杆菌的xylA、xylB、talB和tktA基因导入运动发酵单胞菌,重组菌CP4能利用木糖生产乙醇,产率为0.44 g/(L·h),发酵效率为84%,同时将上述基因整合至染色体,结果发现重组菌的乳酸产量减少,乙醇产率无变化。张颖等[78]将大肠杆菌木糖代谢途径的关键酶基因导入运动发酵单胞菌构建重组子,进行木糖和葡萄糖共发酵,发酵效率分别为63.1%和81.2%。Sarkar等[79]采用系统适应性实验室进化策略,在严格的木糖浓度增加的选择压力下对重组菌ATCC ZW658进行驯化(200 d),选育出优良菌株,该菌株的木糖利用率比原始菌株提高1.65倍。
3.3 产木糖乙醇的大肠杆菌基因工程菌大肠杆菌是一种理想的模式生物,在基因工程中的研究最广泛、最深入,具有基因组小、生长迅速等特点。孙金凤等[80]和谢丽萍等[81]将运动发酵单胞菌的乙醇脱氢酶基因、丙酮酸脱羧酶基因在不同启动子控制下导入大肠杆菌,成功构建能利用木糖产乙醇的重组子。Ingram等[82]首次将含有pet操纵子的质粒转化大肠杆菌,重组子能使己糖、戊糖代谢生成的丙酮酸流向乙醇生成方向。Dien等[83]和Hespell等[84]构建含pet操纵子质粒的重组菌,其在不含抗生素的培养基中发酵能维持遗传稳定性,乙醇浓度为3.9%-4.2%(W/V)。另外,表达isc基因簇能使大肠杆菌KO11菌株的乙醇产量提高、乙醇耐受性增强[85]。此外,大肠杆菌SSK101菌株缺失pgi基因,对糠醛和5-羟甲基糠醛(5-HMF)的耐受性增强,且葡萄糖和木糖共发酵的特性也得到改善[86]。在大肠杆菌RM10菌株中过量表达乙醛脱氢酶基因aldB,重组子在生长速度和木糖乙醇产量方面均比原始菌株有优势[87]。
正如前文所述,对于木糖乙醇发酵,目前最为理想的菌种是树干毕赤酵母[50-52],但其与酿酒酵母基因工程菌相比,后者在乙醇耐受性等方面具有显著的优势。因此,鉴于上述的研究及总结,笔者认为木糖乙醇发酵最有应用前景的微生物是酿酒酵母基因工程菌。
4 利用传统诱变方法改良木糖乙醇菌种菌种诱变改良方法有物理诱变、化学诱变、物理诱变结合化学诱变等方法。物理诱变常用紫外线(UV)、放射性元素如Co60等,化学诱变常用硫酸二乙酯(DES)、亚硝基胍(NTG)等。这些传统的诱变方法的优点是能够提高突变率,在较短的时间内获得更多的优良变异类型,但其缺点是有益突变频率仍然较低,诱发突变的方向难以控制,突变体难以集中多个理想性状。
任佳等[88]利用Co60诱变管囊酵母,获得一株优良菌株800-3,其发酵50 g/L木糖72 h,木糖消耗率和乙醇浓度分别比原始菌株高52.2%和120%,但其糖醇转化率为0.14 g/g,发酵效率为30.43%,乙醇产率为0.08 g/(L·h)。Zhao等[89, 90]和赵磊[91]利用紫外线、微波和硫酸二乙酯诱变管囊酵母,结果发现紫外线和硫酸二乙酯复合诱变效果最佳,选育出两株糖醇转化率提高(分别为0.17 g/g和0.18 g/g,分别比原始菌株提高23.9%和28.7%)的菌株。Watanabe等[92]利用紫外线诱变树干毕赤酵母菌株NBRC1687,选育出一株优良突变菌株PXF-58,该突变株的乙醇浓度为5.45%(糖醇转化率为0.38 g/g),比原始菌株提高38.68%(表 2)。
菌种名称 Name of strain |
木糖/(g/L) Xylose/(g/L) |
糖醇转化率/(g/g) Conversation of xylose to ethanol/(g/g) |
发酵效率/% Fermentation efficiency/% |
乙醇产率/[g/(L·h)] Ethanol yield/[g/(L·h)] |
文献 Reference |
Paecilomyces sp. NF1 | 150 | 0.39 | 75.00 | 0.21 | [33] |
P. sp. NF1 | 200 | 0.38 | 75.00 | 0.24 | [33] |
Pachysolen tannophilus RL-171 | 160 | 0.10 | 21.74 | [34] | |
P.tannophilus RL-171 | 200 | 0.06 | 13.04 | [34] | |
P.tannophilus NRRL-Y2460 | 115 | 0.24 | 52.17 | [37] | |
P.tannophilus NRRL-Y2460 | 158 | 0.21 | 45.65 | [37] | |
Candida shehatae CBIR-Y492 | 50 | 0.36 | 78.26 | [39] | |
C.shehatae CBIR-Y492 | 90 | 0.29 | 63.04 | [39] | |
C.tropicalis ATCC 1369 | 75 | 0.11 | 23.91 | [40] | |
Pichia stipitis CBS 5576 | 50 | 0.45 | 97.83 | 0.34 | [41] |
P.segobiensis CBS 6857 | 20 | 0.25 | 54.35 | 0.02 | [42] |
P.stipitis NRRL Y-7124 | 30 | 0.28 | 60.87 | [43] | |
Spathaspora passalidarum NRRL Y-27907 | 30 | 0.35 | 76.09 | [30] | |
Pestalotiopsis sp.XE-1 | 97.71 | 0.34 | 73.91 | 0.06 | [44] |
Zymomonas mobilis A3 | 100 | 0.45 | 88.20 | 0.94 | [45] |
S.hagerdaliae UFMG-CM-Y303 | 28.2 | 0.28-0.36 | 60.87-78.26 | 0.06-0.13 | [46] |
C.maltosa UFMG-CM-Y2131 | 30 | 0.12 | 23.97 | 0.09 | [47] |
Scheffersomyces sp.UFMG-CM-Y365 | 30 | 0.25 | 49.81 | 0.22 | [47] |
S.stipitis UFMG-CM-Y2303 | 30 | 0.42 | 82.00 | 0.39 | [47] |
S.stipitis UFMG-CM-Y2108 | 30 | 0.42 | 83.00 | 0.40 | [47] |
Spathaspora boniae UFMG-CM-Y306 | 30 | 0.19 | 38.02 | 0.25 | [47] |
S.boniae UFMG-CM-Y363 | 30 | 0.22 | 43.87 | 0.29 | [47] |
Sugiyamaella xylolytica UFMG-CM-Y348 | 30 | 0.14 | 28.00 | 0.08 | [47] |
Wickerhamomyces sp.1 UFMG-CM-Y6241 | 30 | 0.14 | 28.54 | 0.05 | [47] |
Saccharomyces cerevisiae CAT-1-XIT(pRS42K: : XI) | 30 | 0.31 | 67.39 | 0.10 | [69] |
Pachysolen tannophilus 800-3 | 50 | 0.14 | 30.43 | 0.08 | [88] |
P.tannophilus 1770-7 | 20 | 0.17 | 36.96 | [91] | |
P.tannophilus 1770-11 | 20 | 0.18 | 39.13 | [91] | |
Pichia stipitis NBRC 1678 | 114 | 0.27 | 59.12 | 0.50 | [92] |
P.stipitis PXF58 | 114 | 0.38 | 82.00 | 0.60 | [92] |
P.stipitis CICC1960a | 150 | 0.31 | 67.39 | 0.55 | Our team |
P.stipitis 1K-9a | 150 | 0.34 | 73.91 | 0.61 | Our team |
P.stipitis 12.1b | 150 | 0.29 | 63.04 | 0.43 | Our team |
P.stipitis CICC1960b | 150 | 0.33 | 71.74 | 0.66 | Our team |
P.stipitis 31.1b | 150 | 0.38 | 82.61 | 0.78 | Our team |
Note: a means value of fermentation for 84 h, b means value of fermentation for 60 h. |
Morais等[47]选育的木糖乙醇菌株中(包括一些新种),发酵性能较为优良的是树干毕赤酵母,发酵效率超过82%;休哈塔假丝酵母的发酵效率能达到78.26%,但比树干毕赤酵母略低;运动发酵单胞菌A3的木糖乙醇发酵效率相对较高,达到88.20%[45]。目前,以木糖为原料发酵,乙醇含量较高的菌种是拟青霉。利用该菌种分别进行150、200 g/L木糖发酵,乙醇浓度相应为7.56%和9.31%,糖醇转化率分别为0.39、0.38 g/g,发酵效率均为75%,但发酵周期过长(分别需要12 d和13 d),乙醇产率相应为0.21、0.24 g/(L·h)[33]。本研究团队在Co60诱变选育高产菌株的基础上,通过长期驯化途径,最终选育构建出高产菌株31.1(专利菌株保藏在中国典型培养物保藏中心,保藏号为M20211067),但31.1菌株的生长速率比原始低产菌株慢。高产菌株31.1的木糖乙醇发酵效率为82.61%,乙醇产率为0.78 g/(L·h),均比拟青霉高。尽管高产菌株31.1的发酵效率低于树干毕赤酵母CBS 5576菌株(97.83%),但其乙醇产率比CBS 5576菌株[0.34 g/(L·h)]高。此外,高产菌株31.1的发酵效率与最近报道的两株树干毕赤酵母UFMG-CM-Y2303、UFMG-CM-Y2108菌株相差不大,但这两株菌株的木糖乙醇产率分别为0.39、0.40 g/(L·h),明显比高产菌株31.1低(表 2)。因此,高产菌株31.1的木糖乙醇发酵性能在国内同类研究中处于前列水平(数据未发表)。综上所述,采用传统诱变育种方法具有一定的成效。
5 展望尽管运动发酵单胞菌具有很强的木糖乙醇发酵性能,但其为细菌,在工业应用上具有一定的局限性。酵母为工业上应用较为广泛的微生物之一,在工业应用上具有一系列优势。而对于纤维素乙醇高效低成本生产的技术研发,关键因素之一在于选育能高效发酵木糖产乙醇的酵母菌种。为此,笔者认为未来的研究应着眼于以下两点。
(1) 选育及改良非传统酵母
随着世界各国研究人员的努力,从自然界选育构建的非传统酵母会愈来愈多。未来期望能从自然界选育出新的、能高效利用木糖的非传统酵母菌株,并采用传统诱变手段或结合现代分子生物学技术等手段对其进行改良。
(2) 持续改良酿酒酵母或选育新的酿酒酵母
作为传统的、常用的酒精发酵生产菌种,酿酒酵母具有一系列显著的优势。因此,笔者认为应继续选择酿酒酵母作为木糖乙醇发酵的改良对象,其将是最有应用前景的微生物。其一,随着人工智能、合成生物学等技术的快速发展,尤其是人工智能软件AlphaFold2在蛋白质结构预测领域取得巨大进展,采用人工智能技术等手段会助力木糖产乙醇的酿酒酵母微生物菌种的选育构建;其二,随着太空育种技术的进步,未来将采用新的诱变育种技术,选育木糖产乙醇的酿酒酵母微生物菌种;其三,未来期望能选育出新的、能直接利用甚至高效发酵木糖的酿酒酵母菌株,并采用传统诱变手段或结合现代分子育种技术等手段对其进行改良。随着国家大力支持种业的发展,包括一系列的政策扶持和研发投入的加大等,相信在不久的将来,适用于纤维素乙醇高效低成本产业化生产的良种酵母将会出现在市场上并得以推广应用。
[1] |
SU-UNGKAVATIN P, TIRUTA-BARNA L, HAMELIN L. Biofuels, electrofuels, electric or hydrogen?: a review of current and emerging sustainable aviation systems[J]. Progress in Energy and Combustion Science, 2023, 96: 101073. DOI:10.1016/j.pecs.2023.101073 |
[2] |
IYYAPPAN J, PRAVIN R, AL-GHANIM K A, et al. Dual strategy for bioconversion of elephant grass biomass into fermentable sugars using Trichoderma reesei towards bioethanol production[J]. Bioresource Technology, 2023, 374: 128804. DOI:10.1016/j.biortech.2023.128804 |
[3] |
CHISOM AJAYO P, WANG Q, HUANG M, et al. High bioethanol titer and yield from phosphoric acid plus hydrogen peroxide pretreated paper mulberry wood through optimization of simultaneous saccharification and fermentation[J]. Bioresource Technology, 2023, 374: 128759. DOI:10.1016/j.biortech.2023.128759 |
[4] |
SAWHNEY D, VAID S, BANGOTRA R, et al. Proficient bioconversion of rice straw biomass to bioethanol using a novel combinatorial pretreatment approach based on deep eutectic solvent, microwave irradiation and laccase[J]. Bioresource Technology, 2023, 375: 128791. DOI:10.1016/j.biortech.2023.128791 |
[5] |
MELENDEZ J R, MÁTYÁS B, HENA S, et al. Perspectives in the production of bioethanol: a review of sustainable methods, technologies, and bioprocesses[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112260. DOI:10.1016/j.rser.2022.112260 |
[6] |
CHILAKAMARRY C R, SAKINAH A M M, ZULARISAM A W, et al. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: opportunities and challenges[J]. Bioresource Technology, 2022, 343: 126065. DOI:10.1016/j.biortech.2021.126065 |
[7] |
REBOLLEDO-LEIVA R, MOREIRA M T, GONZÁLEZ-GARCÍA S. Progress of social assessment in the framework of bioeconomy under a life cycle perspective[J]. Renewable and Sustainable Energy Reviews, 2023, 175: 113162. DOI:10.1016/j.rser.2023.113162 |
[8] |
BIGGS B W, ALPER H S, PFLEGER B F, et al. Enabling commercial success of industrial biotechnology[J]. Science, 2021, 374(6575): 1563-1565. DOI:10.1126/science.abj5040 |
[9] |
PANDEY A K, KUMAR M, KUMARI S, et al. Integration of acid pre-treated paddy straw hydrolysate to molasses as a diluent enhances ethanol production using a robust Saccharomyces cerevisiae NGY10 strain[J]. Renewable Energy, 2022, 186: 790-801. DOI:10.1016/j.renene.2022.01.039 |
[10] |
SRIVASTAVA R K, SHETTI N P, REDDY K R, et al. Biomass utilization and production of biofuels from carbon neutral materials[J]. Environmental Pollution, 2021, 276: 116731. DOI:10.1016/j.envpol.2021.116731 |
[11] |
YAN P X, WANG H Y, LIAO Y H, et al. Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: a review[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113219. DOI:10.1016/j.rser.2023.113219 |
[12] |
国家能源局. 《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》印发[EB/OL]. (2017-09-13)[2023-07-19]. http://www.nea.gov.cn/2017-09/13/c_136606035.htm.
|
[13] |
HAN X R, CHEN Y F, WANG X D. Impacts of China's bioethanol policy on the global maize market: a partial equilibrium analysis to 2030[J]. Food Security, 2022, 14(1): 147-163. DOI:10.1007/s12571-021-01212-5 |
[14] |
WANG M H, QIAO J, SHENG Y J, et al. Bioconversion of corn fiber to bioethanol: status and perspectives[J]. Waste Management, 2023, 157: 256-268. DOI:10.1016/j.wasman.2022.12.026 |
[15] |
国家统计局. 年度数据(2022年甘蔗)[EB/OL]. [2023-07-19]. https://data.stats.gov.cn/search.htm?s=甘蔗.
|
[16] |
ZHAO Z, XIAN M, LIU M, et al. Biochemical routes for uptake and conversion of xylose by microorganisms[J]. Biotechnology for Biofuels, 2020, 13: 21. DOI:10.1186/s13068-020-1662-x |
[17] |
STEPHENS C, CHRISTEN B, FUCHS T, et al. Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus[J]. Journal of Bacteriology, 2007, 189(5): 2181-2185. DOI:10.1128/JB.01438-06 |
[18] |
DAHMS A S. 3-Deoxy-D-pentulosonic acid aldolase and its role in a new pathway of D-xylose degradation[J]. Biochemical and Biophysical Research Communications, 1974, 60(4): 1433-1439. DOI:10.1016/0006-291X(74)90358-1 |
[19] |
LIU L X, ZHANG L, TANG W, et al. Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic fux analysis[J]. Journal of Bacteriology, 2012, 194: 5413-5422. DOI:10.1128/JB.00713-12 |
[20] |
GU Y, DING Y, REN C, et al. Reconstruction of xylose utilization pathway and regulons in Firmicutes[J]. BMC Genomics, 2010, 11: 255. DOI:10.1186/1471-2164-11-255 |
[21] |
ATITALLAH I B, ANTONOPOULOU G, NTAIKOU I, et al. A comparative study of various pretreatment approaches for bio-ethanol production from willow sawdust, using co-cultures and mono-cultures of different yeast strains[J]. Molecules, 2022, 27(4): 1344. DOI:10.3390/molecules27041344 |
[22] |
NUNTA R, TECHAPUN C, SOMMANEE S, et al. Valorization of rice straw, sugarcane bagasse and sweet sorghum bagasse for the production of bioethanol and phenylacetylcarbinol[J]. Scientific Reports, 2023, 13(1): 727. DOI:10.1038/s41598-023-27451-4 |
[23] |
PATRA P, DAS M, KUNDU P, et al. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts[J]. Biotechnology Advances, 2021, 47: 107695. DOI:10.1016/j.biotechadv.2021.107695 |
[24] |
SENGUPTA P, MOHAN R, WHEELDON I, et al. Prospects of thermotolerant Kluyveromyces marxianus for high solids ethanol fermentation of lignocellulosic biomass[J]. Biotechnol for Biofuels and Bioprod, 2022, 15: 134. DOI:10.1186/s13068-022-02232-9 |
[25] |
BAPTISTA M, DOMINGUES L. Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation[J]. Biotechnol Advances, 2022, 60: 108027. DOI:10.1016/j.biotechadv.2022.108027 |
[26] |
SENKIV M V, RUCHALA J, TSARUK A Y, et al. The role of hexose transporter-like sensor hxs1 and transcription activator involved in carbohydrate sensing azf1 in xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha[J]. Microbial Cell Factories, 2022, 21(1): 162. DOI:10.1186/s12934-022-01889-z |
[27] |
BONATTO C, VENTURIN B, MAYER D A, et al. Experimental data and modelling of 2G ethanol production by Wickerhamomyces sp.UFFS-CE-3.1.2[J]. Renewable Energy, 2020, 145: 2445-2450. DOI:10.1016/j.renene.2019.08.010 |
[28] |
CORTIVO P R D, HICKERT L R, ROSA C A, et al. Conversion of fermentable sugars from hydrolysates of soybean and oat hulls into ethanol and xylitol by Spathaspora hagerdaliae UFMG-CM-Y303[J]. Industrial Crops and Products, 2020, 146: 112218. DOI:10.1016/j.indcrop.2020.112218 |
[29] |
DA SILVA R R, ZAITER M A, BOSCOLO M, et al. Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass[J]. Brazilian Journal of Microbiology, 2023, 54(2): 753-759. DOI:10.1007/s42770-023-00937-z |
[30] |
TRICHEZ D, STEINDORFF A S, DE MORAIS JÚNIOR W G, et al. Identification of traits to improve co-assimilation of glucose and xylose by adaptive evolution of Spathaspora passalidarum and Scheffersomyces stipitis yeasts[J]. Applied Microbiology and Biotechnology, 2023, 107(4): 1143-1157. DOI:10.1007/s00253-023-12362-1 |
[31] |
GENG B, LIU S Y, CHEN Y H, et al. A plasmid-free Zymomonas mobilis mutant strain reducing reactive oxygen species for efficient bioethanol production using industrial effluent of xylose mother liquor[J]. Frontier in Bioengineering and Biotechnology, 2022, 10: 1110513. DOI:10.3389/fbioe.2022.1110513 |
[32] |
LE Y L, FU Y, SUN J Z. Genome editing of the anaerobic Thermophile Thermoanaerobacter ethanolicus using thermostable Cas9[J]. Applied and Environmental Microbiology, 2020, 87(1): e01773-20. DOI:10.1128/AEM.01773-20 |
[33] |
WU J F, LASTICK S M, UPDEGRAFF D M. Ethanol production from sugars derived from plant biomass by a novel fungus[J]. Nature, 1986, 321: 887-888. DOI:10.1038/321887a0 |
[34] |
LEONARD R H, HAJNY G J. Fermentation of wood sugars to ethyl alcohol[J]. Industrial and Engineering Chemistry, 1945, 37(4): 390-395. DOI:10.1021/ie50424a025 |
[35] |
DU PREEZ J C, VAN DER WALT J P. Fermentation of D-xylose to ethanol by a strain of Candida shehatae[J]. Biotechnology Letters, 1983, 5: 357-362. DOI:10.1007/BF01141138 |
[36] |
陈艳萍, 勇强, 刘超纲, 等. 戊糖发酵微生物及其选育[J]. 纤维素科学与技术, 2001, 9(3): 57-61. DOI:10.16561/j.cnki.xws.2001.03.010 |
[37] |
DU PREEZ J C, PRIOR B A, MONTEIRO A M T. The effect of aeration on xylose fermentation by Candida shehatae and Pachysolen tannophilus[J]. Applied Microbiology and Biotechnology, 1984, 19: 261-266. DOI:10.1007/BF00251848 |
[38] |
GONG C S, MCCRAKER L D, TSAO G T. Direct fermentation of D-xylose to ethanol by a xylose-fermentating yeast mutant, Candida sp.XF217[J]. Biotechnology Letters, 1981, 3: 245-250. DOI:10.1007/BF00154652 |
[39] |
SLININGER P J, BOTHAST R J, VAN CAUWENBERGE J E, et al. Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus[J]. Biotechnology and Bioengineering, 1982, 24(2): 371-384. DOI:10.1002/bit.260240210 |
[40] |
UENG P P, GONG C S. Ethanol production from pentoses and sugarcane bagasse hemicellulose hydrolysate by Mucor and Fusarium species[J]. Enzyme and Microbial Technology, 1982, 4(3): 169-171. DOI:10.1016/0141-0229(82)90111-9 |
[41] |
YU S Y, WAYMAN M, PAREKH S K. Fermentation to ethanol of pentose-conspent sulphite liquor[J]. Biotechnology and Bioengineering, 1987, 29(9): 1144-1150. DOI:10.1002/bit.260290915 |
[42] |
LINDÉN T, HAHN-HÄGERDAL B. Fermentation of lignocellulose hydrolysates with yeasts and xylose isomerase[J]. Enzyme and Microbial Technology, 1989, 11(9): 583-589. DOI:10.1016/0141-0229(89)90086-0 |
[43] |
范贺超, 张梁, 李赢, 等. 五株木糖利用酵母的生理代谢特性[J]. 微生物学报, 2015, 55(8): 1026-1035. |
[44] |
PANG Z W, LIANG J J, HUANG R B. Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp.XE-1[J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(8): 927-933. DOI:10.1007/s10295-010-0862-y |
[45] |
AGRAWAL M, MAO Z C, CHEN R R. Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain[J]. Biotechnology and Bioengineering, 2011, 108(4): 777-785. DOI:10.1002/bit.23021 |
[46] |
RECH F R, FONTANA R C, ROSA C A, et al. Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysates into ethanol by Spathaspora hagerdaliae[J]. Bioprocess and Biosystems Engineering, 2019, 42(1): 83-92. DOI:10.1007/s00449-018-2016-y |
[47] |
MORAIS C G, SENA L M F, LOPES M R, et al. Production of ethanol and xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse hydrolysate[J]. Fungal Biology, 2020, 124(7): 639-647. DOI:10.1016/j.funbio.2020.03.005 |
[48] |
DA SILVA E G, BORGES A S, MAIONE N R, et al. Fermentation of hemicellulose liquor from Brewer's spent grain using Scheffersomyces stipitis and Pachysolen tannophilus for production of 2G ethanol and xylitol[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(2): 127-137. DOI:10.1002/bbb.2072 |
[49] |
NASEERUDDIN S, DESAI S, RAO L V. Co-culture of Saccharomyces cerevisiae (VS3) and Pichia stipitis (NCIM 3498) enhances bioethanol yield from concentrated Prosopis juliflora hydrolysate[J]. 3 Biotech, 2021, 11: 21. |
[50] |
RUCHALA J, KURYLENKO O O, DMYTRUK K V, et al. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha)[J]. Journal of Industrial Microbiology and Biotechnology, 2020, 47(1): 109-132. DOI:10.1007/s10295-019-02242-x |
[51] |
张凌燕. 木糖产乙醇酵母的筛选及分子生物学改造[D]. 无锡: 江南大学, 2008.
|
[52] |
张颖, 马瑞强, 洪浩舟, 等. 微生物木糖发酵产乙醇的代谢工程[J]. 生物工程学报, 2010, 26(10): 1436-1443. DOI:10.13345/j.cjb.2010.10.014 |
[53] |
AMORE R, KÖTTER P, KVSTER C, et al. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimailation yeast Pichia stipitis[J]. Gene, 1991, 109(1): 89-97. DOI:10.1016/0378-1119(91)90592-Y |
[54] |
WATANABE S, PACK S P, SALEH A A, et al. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae[J]. Bioscience, Biotechnology and Biochemistry, 2007, 71(5): 1365-1369. DOI:10.1271/bbb.70104 |
[55] |
PETSCHACHER B, NIDETZKY B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2008, 7: 9. DOI:10.1186/1475-2859-7-9 |
[56] |
HO N W Y, CHEN Z D, BRAINARD A P, et al. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol[J]. Advances in Biochemical Engineering and Biotechnology, 1999, 65: 163-192. |
[57] |
KIM S R, HA S J, KONG I I, et al. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14(4): 336-343. DOI:10.1016/j.ymben.2012.04.001 |
[58] |
BROWN S R, STAFF M, LEE R, et al. Design of experiments methodology to build a multifactorial statistical model describing the metabolic interactions of alcohol dehydrogenase isozymes in the ethanol biosynthetic pathway of the yeast Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2018, 7(7): 1676-1684. DOI:10.1021/acssynbio.8b00112 |
[59] |
ZHU L, LI P S, SUN T M, et al. Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates[J]. Bioresource Technology, 2020, 313: 123724. DOI:10.1016/j.biortech.2020.123724 |
[60] |
JEFFRIES T W, JIN Y S. Metabolic engineering for improved fermentation of pentoses by yeasts[J]. Applied Microbiology and Biotechnology, 2004, 63(5): 495-509. DOI:10.1007/s00253-003-1450-0 |
[61] |
LÖNN A, GÁRDONYI M, VAN ZYL W, et al. Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis, gene cloning and protein characterization[J]. European Journal of Biochemistry, 2002, 269(1): 157-163. DOI:10.1046/j.0014-2956.2002.02631.x |
[62] |
王青艳, 杨登峰, 孙靓, 等. 酿酒酵母中的嗜热细菌木糖异构酶活性表达及木糖代谢研究[J]. 广西科学, 2009, 16(4): 446-450. DOI:10.3969/j.issn.1005-9164.2009.04.025 |
[63] |
NASCIMENTO V M, FONSECA G G. Effects of the carbon source and the interaction between carbon sources on the physiology of the industrial Saccharomyces cerevisiae CAT-1[J]. Preparative Biochemistry Biotechnology, 2020, 50(4): 349-356. DOI:10.1080/10826068.2019.1703192 |
[64] |
COVER E A, SILVA L F L, BASTOS R G, et al. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2[J]. World Journal of Microbiology and Biotechnology, 2019, 35(9): 136. DOI:10.1007/s11274-019-2714-x |
[65] |
COIMBRA L, MALAN K, FAGÚNDEZ A, et al. Fermentation of D-xylose to ethanol by Saccharomyces cerevisiae CAT-1 recombinant strains[J]. Bioenergy Research, 2023, 16(2): 1001-1012. DOI:10.1007/s12155-022-10514-1 |
[66] |
CHEN S T, XU Z X, DING B N, et al. Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery[J]. Science Advances, 2023, 9(5): eadd8835. DOI:10.1126/sciadv.add8835 |
[67] |
沈煜, 王颖, 史文龙, 等. 酿酒酵母工业菌株中XI木糖代谢途径的建立[J]. 中国生物工程杂志, 2005, 25(9): 69-73. DOI:10.13523/j.cb.20050915 |
[68] |
HA S J, GALZKA J M, KIM S R, et al. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 108(2): 504-509. |
[69] |
BUZIOL S, BECKER J, BAUMEISTER A, et al. Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae[J]. FEMS Yeast Research, 2002, 2(3): 283-291. |
[70] |
SALOHEIMO A, RAUTA J, STASYK O V, et al. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases[J]. Applied Microbiology and Biotechnology, 2007, 74(5): 1041-1052. DOI:10.1007/s00253-006-0747-1 |
[71] |
LEANDRO M J, GONÇALVES P, SPENCER-MARTINS I. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter[J]. Biochemistry Journal, 2006, 395(3): 543-549. DOI:10.1042/BJ20051465 |
[72] |
MADHAVAN A, TAMALAMPUDI S, USHIDA K, et al. Xyloseisomerase from policentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol[J]. Applied Microbiology and Biotechnology, 2009, 82(6): 1067-1078. DOI:10.1007/s00253-008-1794-6 |
[73] |
蔡艳青, 齐显尼, 齐奇, 等. 敲除MIG1和SNF1基因对酿酒酵母共利用葡萄糖和木糖的影响[J]. 生物工程学报, 2018, 34(1): 54-67. |
[74] |
TRAN P H N, KO J K, GONG G, et al. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery[J]. Biotechnology for Biofuels, 2020, 13: 12. DOI:10.1186/s13068-019-1641-2 |
[75] |
SEO J S, CHONG H, PARK H S, et al. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4[J]. Nature Biotechnology, 2005, 23(1): 63-68. DOI:10.1038/nbt1045 |
[76] |
KOUVELIS V N, SAUNDERS E, BRETTIN T S, et al. Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163[J]. Journal of Bacteriology, 2009, 191(22): 7140-7141. DOI:10.1128/JB.01084-09 |
[77] |
ZHANG M, EDDY C, DEANDA K, et al. Metabolic engineeringof a pentose metabolism pathway in ethanologenic Zymomonas mobilis[J]. Science, 1995, 267(5195): 240-243. DOI:10.1126/science.267.5195.240 |
[78] |
张颖, 马瑞强, 洪浩舟, 等. 重组运动发酵单胞菌的构建及木糖利用特性研究[J]. 生物技术通报, 2009, 7: 160-165. DOI:10.13560/j.cnki.biotech.bull.1985.2009.07.001 |
[79] |
SARKAR P, MUKHERJEE M, GOSWAMI G, et al. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658:a potential platform for co-utilization of glucose and xylose[J]. Journal of Industrial Microbiology and Biotechnology, 2020, 47(3): 329-341. DOI:10.1007/s10295-020-02270-y |
[80] |
孙金凤, 徐敏, 张峰, 等. 利用木糖和葡萄糖合成乙醇的新型重组大肠杆菌的研究[J]. 微生物学报, 2004, 44(5): 600-604. DOI:10.13343/j.cnki.wsxb.2004.05.010 |
[81] |
谢丽萍, 诸葛健, 王正祥. 大肠杆菌中乙醇合成途径的构建[J]. 无锡轻工大学学报, 2002, 21(2): 116-119. |
[82] |
INGRAM L O, CONWAY T, CLARK D P, et al. Genetic engineering of ethanol production in Escherichia coli[J]. Applied and Environmental Microbiology, 1987, 53(10): 2420-2425. DOI:10.1128/aem.53.10.2420-2425.1987 |
[83] |
DIEN B S, NICHOLS N N, O'BRYAN P J, et al. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass[J]. Applied Biochemistry and Biotechnology, 2000, 84(86): 181-196. |
[84] |
HESPELL R B, WYCKOFF H, DIEN B S, et al. Stabilization of pet operon plasmids and ethanol ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate formate-lyase activities[J]. Applied and Environmental Microbiology, 1996, 62(12): 4594-4597. DOI:10.1128/aem.62.12.4594-4597.1996 |
[85] |
MARTÍNEZ-ALCANTAR L, DÍAZ-PÉREZ A L, CAMPOS-GARCÍA J. The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain[J]. World Journal of Microbiology and Biotechnology, 2019, 35(12): 189. DOI:10.1007/s11274-019-2769-8 |
[86] |
JILANI S B, DEV C, EQBAL D, et al. Deletion of pgi gene in E.coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture[J]. Microbial Cell Factories, 2020, 19(1): 153. DOI:10.1186/s12934-020-01414-0 |
[87] |
MANOW R, WANG C, GARZA E, et al. Expression of acetaldehyde dehydrogenase (aldB) improved ethanol production from xylose by the ethanologenic Escherichia coli RM10[J]. World Journal of Microbiology and Biotechnology, 2020, 36(4): 59. DOI:10.1007/s11274-020-2797-4 |
[88] |
任佳, 鲍杰, 张素平, 等. Co60诱变管囊酵母发酵木糖产乙醇的研究[J]. 生物质化学工程, 2009, 43(5): 11-14. |
[89] |
ZHAO L, YU J L, ZHANG X, et al. The ethanol tolerance of Pachysolen tannophilus in fermentation on xylose[J]. Applied Biochemistry and Biotechnology, 2010, 160(2): 378-385. DOI:10.1007/s12010-008-8308-y |
[90] |
ZHAO L, ZHANG X, TAN T W. Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus[J]. Biomass and Bioenergy, 2008, 32(12): 1156-1161. DOI:10.1016/j.biombioe.2008.02.011 |
[91] |
赵磊. 管囊酵母发酵木糖产乙醇[D]. 北京: 北京化工大学, 2008.
|
[92] |
WATANABE T, WATANABE I, YAMAMOTO M, et al. A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance[J]. Bioresource Technology, 2011, 102(2): 1844-1848. DOI:10.1016/j.biortech.2010.09.087 |