兰科(Orchidaceae)是维管植物中物种多样性最丰富的科[1, 2],全球约有736属28 000多种[3]。兰科植物除具有极高的观赏价值、药用价值、文化价值外,还具有出色的护肤美容作用。近年来,作为功效原料与芳香剂,兰科植物越来越多地被开发和应用于化妆品领域。在法国,兰科植物如流苏石斛(Dendrobium fimbriatum)、天麻(Gastrodia elata)等提取物被娇兰(Guerlain)品牌添加于Orchidée Impériale系列产品当中[4],用作唤醒皮肤自身缺氧诱导因子(HIF),保持细胞活力。在苏里南共和国,兰花植物提取物被用作面霜的抗衰老成分,皮肤保湿剂和润肤剂的基本成分,以及洗浴用品等产品的重要香料[5]。在Wallacea地区,兔耳兰(Cymbidium lancifolium)和美丽蝴蝶兰(Phalaenopsis amabilis)全株被用作润肤剂和皮肤调理成分,而竹枝石斛(D.salaccense)的叶子被用作芳香剂和头发用香水;此外,南亚硬叶兰(C.bicolor)被用于淡化黑斑[6]。在我国,北京植物医生生物科技有限公司与昆明植物研究所将美花石斛(D.loddigesii)活性成分进行富集并应用于化妆品中作为美白、抗衰老成分[7, 8];提取白及(Bletilla striata)块茎中的山药素Ⅲ成分并将其作为抗衰老成分应用于化妆品中[9];以铁皮石斛(D.officinale)、金钗石斛(D.nobile)和细茎石斛(D.moniliforme)等多种石斛属植物为原料,研发了石斛兰鲜肌凝时系列产品。相关专利表明,手参属植物Gymnadenia austriaca、短距手参属植物Nigritella nigra、围柱兰属植物Encyclia odoratissima和腋唇兰(Maxillaria tenuifolia)被应用于抗衰老化妆品中[10]。研发特色植物功效原料一直以来是护肤美容领域发展的重要方向,兰科植物种类繁多且具有独特的药理活性,因此具有巨大的开发前景。归纳梳理兰科植物常见护肤美容活性成分及其护肤美容作用,是合理开发利用并最大化实现兰科植物护肤美容应用价值的关键。本文对当前已发现的兰科植物护肤美容活性成分及其作用进行了系统梳理,认为未来仍需加强兰科植物护肤美容活性成分的分离、提纯与结构鉴定研究,并结合多组学技术揭示活性成分的遗传基础与代谢调控机制,同时可探究多种创新技术及其组合来提高兰科植物高活性提取物的使用率,以最大化发挥其在护肤美容方面的功效。
1 兰科植物常见护肤美容活性成分兰科植物含有多种化学活性成分,其中的多糖、酚类、生物碱、有机硫化物等为兰科植物常见护肤美容活性成分;而萜烯类化合物为兰科植物常见芳香挥发性成分,具有赋香功效,常作为化妆品的香料原料。
1.1 多糖多糖由多个单糖分子缩合、失水而成,是一类分子结构复杂且庞大的糖类物质。植物多糖有丰富的生物活性,具有保湿、防紫外线损伤、治疗痤疮、延缓衰老、美白及修复屏障受损的皮肤等功能[11]。已有研究表明兰科植物多糖具有保湿、抗氧化、抗炎、美白等作用。Kanlayavattanakul等[12, 13]研究发现,石斛属植物D.cv.Khao Sanan花的多糖水提取物具有皮肤保湿作用,霍山石斛(D.huoshanense)、金钗石斛和铁皮石斛茎的多糖提取物具有抗炎活性。Sasaki等[14]通过分子检测、细胞实验、3D皮肤模型检测结合人体测试发现,齿舌兰属植物或者该属与Cochlioda杂交植物的任意部位(优选花部位)的1, 3-丁二醇和水混合溶剂提取物具有保湿功效,该提取物中多糖含量为60%-70%,其中主要的中性糖为甘露糖。Fan等[15]将叠鞘石斛(D.denneanum)茎的水提粗多糖经柱层析分离纯化得到具有与阳性对照维生素C (VC)功效相当的抗氧化多糖组分,该多糖由阿拉伯糖、木糖、甘露糖、葡萄糖和半乳糖组成,摩尔比为1.00∶1.62∶1.18∶77.5∶7.79;该组分对羟基自由基和1, 1-二苯基-2-三硝基苯肼(DPPH)自由基均有较强的清除作用。另外,Zeng等[16]研究发现,金线兰(Anoectochilus roxburghii)新鲜苗中的多糖具有抗氧化性,且通过紫外红外光谱表征研究发现,相对高含量的甘露糖、阿拉伯糖、蛋白质以及具有CO、SO等官能团是决定金线兰高抗氧化活性的潜在原因。综上所述,兰科植物多糖对护肤美容作用有显著影响,但目前对多糖成分及其含量的解析不够深入,还需进一步挖掘和系统研究。
1.2 酚类酚类化合物是羟基与芳烃核直接相连形成的有机化合物,按其芳烃环上直接连接的羟基数目的不同,可分为一元酚、二元酚和多元酚,且通常又可分为黄酮类、茋类(联苄类与菲类)、酚酸、香豆素类、单宁等化合物[17]。
已有研究表明兰科植物酚类物质具有抗氧化活性。与高抗氧化性能的水溶性维生素E (Trolox)、VC和槲皮苷(Quercitrin)相比,很多兰科植物提取物显示出更为优越的抗氧化性能,且该性能与其含有的酚类化合物相关,如:铁皮石斛茎的乙醇或氯仿或乙酸乙酯或正丁醇萃取物[18]、长距石斛(D.longicornu)茎的丙酮提取物[19]、玫瑰石斛(D.crepidatum)茎的乙醇或丙酮提取物[20]、细茎石斛茎的己烷或氯仿或丙酮或乙醇提取物[21]、黄喉石斛(D.signatum)叶的乙醇提取物[22]、石斛属植物D.sabin花的甲醇粗提物[23]、琴蜂兰(Cottonia peduncularis)整株的甲醇或丙酮提取物[24]、叉唇万代兰(Vanda cristata)茎的乙醇提取物[25]、台湾银线兰(A.formosanus)全株的水提取物或正丁醇部位的酸解液[26]。诸多兰科植物的黄酮类化合物亦被证明具有抗氧化活性,如:石斛杂交种D.Topaz Dream × D.bigibbum幼苗、细茎石斛的甲醇提取物中发现的槲皮素[27, 28],石斛属植物D.denudans茎的甲醇提取物中发现的芦丁[29],秋石斛‘三亚阳光’(D.phalaenopsis ‘Sanya Sunny’)花中提取的花青素[30],蝴蝶兰杂交种Doritaenopsis Tinny Ribbon×D.Plum Rose花的甲醇提取物中分离得到的apigenin 6-C-β-D-ribopyranosyl-7-O-β-D-glucopyranoside和(3′, 7-di-O-sinapylglucosyl)-3-glucosyl cyanidin[31]等。石斛属联苄类化合物的抗氧化活性也被广泛研究证明,如:细茎石斛(原文为D.candidum)茎的乙酸乙酯提取物中分离出的dendrocandin P、dendrocandin H、dendrocandin I[32, 33]、dendrocandin E[34],铁皮石斛干燥茎的水提取物中分离得到的3, 4′-二羟基-5-甲氧基联苄、3, 4′, 5-三羟基-3′-甲氧基联苄、dendrocandin U[35],兜唇石斛(D.aphyllum)茎的95%乙醇提取物中分离出的aphyllone B[36],红牙刷石斛(D.secundum)茎的甲醇提取物中分离出的4, 5, 4′-三羟基-3, 3′-二甲氧基联苄、moscatilin[37],华石斛(D.sinense)全株的乙醇提取物中分离出的dendrosinen B、dendrosinen D、5, 4-二羟基-3, 4, 3′-三甲氧基联苄、aloifolⅠ、3, 4-二羟基-5, 3′-二甲氧基联苄、longicornuol A、trigonopol A[38],美花石斛茎的80%乙醇提取物中分离出的crepidatin、mioscatiln、4, 5, 4′-三羟基-3, 3′-二甲氧基联苄、4′, 5-二羟基-3, 3′-二甲氧基联苄、tristin[39],细茎石斛(原文D.candidum)茎的乙酸乙酯提取物中分离出的(S)-3, 4, α-三羟基-5, 4′-二甲氧基联苄[40]。此外,菲类化合物同样亦被证实具有抗氧化活性,如:角茎灯笼石斛(D.palpebrae)全株的甲醇提取物中分离出的菲类化合物dendroflorin[41],大花万代兰(V.coerulea)茎的90%乙醇提取物中分离出的菲类化合物imbricatin、methoxycoelonin[42]。除黄酮类、联苄类、菲类化合物外,从兰科植物中分离出的其他酚类化合物同样被证实具有抗氧化活性,如:温室中生长的细茎石斛的甲醇提取物中分离出的酚酸类化合物烷基阿魏酸酯[28],红牙刷石斛茎的甲醇提取物中分离出的酚酸类化合物阿魏酸[37],美花石斛茎的80%乙醇提取物中分离出的酚酸类化合物反式-阿魏酸对羟基苯乙酯[39],蝴蝶兰属6种商用杂交种叶与根部的乙醇提取物中分离出的酚酸类化合物原儿茶酸、对羟基苯甲酸、香草酸、咖啡酸、丁香酸、香兰素、阿魏酸、芥子酸、对香豆酸、苯甲酸和鞣花酸[43],红牙刷石斛茎的甲醇提取物中分离出的木质素类化合物丁香脂素[37],美花石斛茎的80%乙醇提取物中分离出的香豆素类物质苏氨酸-7-O-乙基-9-O-(4-羟基苯基)丙酰愈创木酰甘油和二氢松柏基二氢对香豆酸[39]等。
除抗氧化活性外,已有研究表明兰科植物酚类物质还具有美白、抗衰老、防紫外线损伤、抗炎、抑菌等活性。兰科植物中的联苄类化合物和黄酮类已被证明具有美白作用,如:观赏兰属杂交种假鳞茎和根的乙酸乙酯提取物中分离得到的联苄化合物gigantol和tristin[44],美花石斛茎的80%乙醇提取物中分离出的联苄化合物3, 5, 3′-羟基联苄[39],蝴蝶兰杂交种的花的甲醇提取物中分离出的黄酮类化合物saponarin[31]。兰科植物中的菲类、联苄类和酚酸类等化合物已被证明具有抗衰老作用。研究表明,观赏兰属杂交种假鳞茎和根的乙酸乙酯提取物中分离出的菲类化合物bulbophyllanthrin、3-羟基-2, 4, 7-三甲氧基菲、5-羟基-2-甲氧基-1, 4-菲醌和ephemeranthroquinone B[44]等具有剂量依赖性的抗胶原酶活性;美花石斛茎的80%乙醇提取物中分离出的联苄类化合物batatasin Ⅲ[39]具有促进胶原生成的作用;凤蝶兰(Papilionanthe teres,原文为Vanda teres)茎的甲醇提取物中分离出的酚酸类物质eucomic acid和苄酯苷类化合物vandateroside Ⅱ[45]具有增强人体皮肤永生化角质形成细胞(HaCaT)中的细胞色素c氧化酶活性作用,可作为抗衰老抑制剂。兰科植物中的香兰素类化合物已被证明具有防紫外线损伤作用。从香荚兰(Vanilla planifolia)果荚中分离得到的香兰素[46]可通过恢复角质形成干细胞(KSC)活力,抑制与衰老相关的β-半乳糖苷酶(SA-β-gal)在KSC的积累,减弱DNA损伤,降低肿瘤坏死因子-α (TNF-α)、白细胞介素-1β (IL-1β)和白细胞介素-6 (IL-6)的产生,抑制磷酸化,保护KSC免受紫外线(UVB)诱导的伤害。兰科植物中的黄酮醇类、菲类、联苄类化合物已被证明具有抗炎作用。例如,从兜唇石斛茎的95%乙醇提取物中分离出的菲类物质moscatin、联苄衍生物moscatilin、黄酮醇类tricetin 3′, 4′, 5′-trimethyl ether 7-O-β-glucopyranoside[36]和从见血青(Liparis nervosa)全株中分离出的菲类物质blestriarene C、coelonin、(+)-pinoresinol、2, 5-二羟基-4-甲氧基菲、2, 3, 7-二羟基-4-甲氧基菲和2, 7, 2′-三羟基-4, 4′, 7′-三甲氧基-1, 1′-联菲[47]可抑制脂多糖LPS刺激的巨噬细胞RAW264.7产生一氧化氮自由基;从大花万代兰茎的90%乙醇提取物中分离出的联苄化合物gigantol[42]可抑制炎症介质前列腺素PGE-2产生。兰科植物中的菲类物质同样具有抑菌作用,从蜥蜴兰属植物Himantoglossum robertianum假鳞茎和根分离出的菲类物质loroglossol和hircinol[48]对大肠杆菌Escherichia coli和金黄色葡萄球菌Staphylococcus aureus具有抗菌活性。
1.3 其他生物碱是存在于自然界中的一类含氮的碱性有机化合物。已有研究表明兰科植物生物碱具有抑菌、抗炎作用。Wang[49]总结发现,从玫瑰石斛茎中分离得到的生物碱(+)-homocrepidine A具有显著的抗炎活性,可抑制NO的产生,半抑制浓度IC50值小于5 μmol/L,该化合物值得进一步研究。
有机硫化合物指分子结构中含有硫元素的一类化合物。已有研究表明兰科植物有机硫化合物具有美白作用。Chen等[50]研究发现,从天麻根茎中分离出的一种天然产物双(4-羟基苄基)硫醚在皮肤美白方面具有优良的功效,是开发安全化妆品和药理制剂的潜在候选者。
兰科植物的挥发性化合物主要为萜烯类。Gaytán等[51]采用薄层色谱法结合气相色谱质谱法(TLC-GC-MS)分析发现,兰属植物花朵(除去花穗和子房)经水蒸气蒸馏法提取的精油具有赋予香水芳香的潜力,该精油富含22.29%的单萜醇类化合物芳樟醇。兰科植物挥发性成分已被广泛研究,包括兰属蕙兰(C.faberi)[52]、春兰(C.goeringii)[52]、墨兰(C.sinense)[52]、蕙兰杂交种守良梅(C.Shouliangmei)[53]及一些杂交品种[54]等,石斛属紫瓣石斛(D.parishii)[55]、铁皮石斛[56]、金钗石斛[57]等,钻喙兰属海南钻喙兰(Rhynchostylis gigantea)及其变种R.gigantea var.harrisonianum[55],头蕊兰属大花头蕊兰(Cephalanthera damasonium)与红花头蕊兰(C.rubra)[58],倒距兰属倒距兰(Anacamptis pyramidalis)与A.coriophora subsp.fragrans[59],舌唇兰属细距舌唇兰(Platanthera bifolia)和二叶舌唇兰(P.chlorantha)[60],大叶蝴蝶兰(P.violacea)[61],腋唇兰[62],大花万代兰[55],文心兰(Oncidium flexuosum)[63],红门兰属植物Orchis pallens[64],萼足兰属植物Cyrtopodium macrobulbon[65],蜂兰属植物Ophrys holosericea[59],长药兰属植物Serapias vomeracea[59],卡特兰杂交种Cattleya ‘Gleneyrie′s Green Giant’[66]及香荚兰[67, 68]等,这些兰科植物均具有赋予化妆品香气的潜力。
综上,兰科植物含有多种护肤美容活性物质,如多糖、酚类、生物碱、有机硫化合物、萜烯类化合物等,具有很好的保湿、抗氧化、抗炎、美白、抗衰老、抑菌、赋香等护肤美容功效,而这些护肤美容活性成分可来自兰科植物各个部位,包括全株、花、叶、茎、根、果、幼苗等。通过文献检索,本文梳理了已记载具有护肤美容功效的兰科植物27属62种(表 1)。其中,石斛属、兰属、蝴蝶兰属、万代兰属兰科植物在护肤美容方面的研究较多。
属 Genus |
物种 Species |
样品来源 Sample sources |
主要活性(香气)成分 Main active (aroma) ingredients |
作用 Bioactivity |
参考文献 References |
Anacamptis | Anacamptis pyramidalis | Flowers | Tricosane | Fragrance, antioxidation | [59] |
Anacamptis coriophora subsp.fragrans | Flowers | Heneicosane | Fragrance, antioxidation | [59] | |
Anoectochilus | Anoectochilus roxburghii | Plantlets | Polysaccharide | Antioxidation | [16] |
Anoectochilus formosanus | Whole plant,plantlets | Flavone aglycone | Antioxidation,whitening | [26, 69] | |
Bletilla | Bletilla striata | Tubers | 2-isobutyl malic acid, glucose oxybenzyl ester, batatasin Ⅲ | Whitening, anti-aging | [9, 70] |
Bulbophyllum | Bulbophyllum morphologlorum | Leaves, pseudobulbs | / | Antioxidation | [71] |
Cottonia | Cottonia peduncularis | Whole plant | Flavonoids, polyphenols | Antioxidation | [24] |
Cycnoches | Cycnoches cooperi | Whole plant | / | Anti-inflammatory, anti-aging | [72, 73] |
Crepidium | Crepidium acuminatum | Leaves, stems | Dietary fatty acids, alpha-hydroxy acids, phenolic acids, sterols, amino acids, sugars, glycosides | Antioxidation, anti-inflammatory, whitening, anti-aging, photoprotection | [74] |
Cymbidium | Cymbidium sp. | Flowers | Linalool | Fragrance | [51] |
Cymbidium Tethys Cymbidium Jazz festival Cymbidium Tracey Reddaway Cymbidium Thomas Starzl |
Pseudobulbs, roots | Gigantol, tristin, bulbophyllanthrin, 3-hydroxy-2, 4, 7-trimethoxy-phenanthrene, 5-hydroxy-2-methoxy1, 4-phenanthrenequino, ephemeranthroquinone B | Whitening, anti-aging | [44] | |
Cymbidium lancifolium | Whole plant | / | Emollient | [6] | |
Cymbidium bicolor | Leaves | / | Fade black spots | [6] | |
Cattleya | Brassocattleya Marcella Koss (Hybrid of Cattleya and its relative genu) | Stems, leaves | / | Whitening | [75, 76] |
Rhyncholaeliocattleya Haw Yuan Beauty (Hybrid of Cattleya and its relative genus) | Flowers | Phenols | Antioxidation, anti-aging | [77] | |
Dendrobium | Dendrobium chrysotoxum | Flowers | / | Anti-aging | [78] |
Dendrobium phalaenopsis ‘Sanya Sunny’ | Petals | Anthocyanins | Antioxidation | [30] | |
Dendrobium palpebrae | Whole plant | Dendroflorin | Antioxidation, anti-inflammatory | [41] | |
Dendrobium salaccense | Leaves | / | Fragrance | [6] | |
Dendrobium denneanum | Stems | Polysaccharide | Antioxidation | [15] | |
Dendrobium aphyllum | Stems | Aphyllone B、moscatin、moscatilin、tricetin 3′, 4′, 5′-trimethyl ether 7-O-β-glucopyranoside | Antioxidation, anti-inflammatory | [36] | |
Dendrobium secundum | Stems | 4, 5, 4′-trihydroxy-3, 3′-dimethoxybibenzyl, moscatilin, syringaresinol, ferulic acid | Antioxidation | [37] | |
Dendrobium signatum | Leaves | Polyphenols | Antioxidation | [22] | |
Dendrobium huoshanense | Stems | Polysaccharide | Anti-inflammatory | [13] | |
Dendrobium officinale | Protocorms, stems | 3, 4′-dihydroxy-5methoxybibenzyl, 3, 4′, 5-trihydroxy-3′-methoxybibenzyl, dendrocandin U, polysaccharides, flavonoids, polyphenols | Antioxidation, whitening, anti-ultraviolet UVB, anti-inflammatory, anti-aging | [13, 18, 35, 79-81] | |
Dendrobium crepidatum | Stems | Flavonoids, polyphenols, (+)-homocrepidine A | Antioxidation, anti-inflammatory | [20, 49] | |
Dendrobium loddigesii | Stems | Threo-7-Oethyl-9-O-(4-hydroxyphenyl)propionyl-guaiacylglycerol, crepidatin, moscatilin, 4, 5, 4′-trihydroxy-3, 3′-dimethoxybibenzyl, 4′, 5-dihydroxy-3, 3′-dimethoxybibenzyl, tristin, Dihydroconiferyl dihydro-p-coumarate, p-hydroxyphenethyl trans-ferulate, 3, 5, 3′-hydroxybibenzyl, batatasin Ⅲ | Antioxidation, whitening, anti-aging | [7, 8, 39] | |
Dendrobium moniliforme | Stems, leaves | Alkyl ferulates, dendrocandin P, dendrocandin H, dendrocandin I, dendrocandin E, Flavonoids, polyphenols, quercetin, (s)-3, 4, α-trihydroxy-5, 4′-dimethoxybiphenyl | Antioxidation | [21, 28, 32-34, 40, 82, 83] | |
Dendrobium longicornu | Stems | Flavonoids, polyphenols | Antioxidation | [19] | |
Dendrobium sinense | Whole plant | Dendrosinen B, dendrosinen D, 5, 4-dihydroxy-3, 4, 3′-trimethoxybiphenyl, aloifol Ⅰ, 3, 4-dihydroxy-5, 3′-dimethoxybiphenyl, longicornuol A, trigonopol A | Anti-aging | [38] | |
Dendrobium Sonia Earsakul | Leaves, pseudobulbs, flowers | / | Anti-oxidant, whitening, anti-aging | [71, 84] | |
Dendrobium cv.Khao Sanan | Flowers | Polysaccharides | Moisturizing | [12] | |
Dendrobium denudans | Stems | Rutin | Antioxidation | [29] | |
Dendrobium sabin | Flowers | Polyphenol | Antioxidation | [23] | |
Dendrobium nobile | Stems | Polysaccharide | Anti-inflammatory | [13] | |
Dendrobium Sonia Dendrobium Sonia Pink Dendrobium Snow Rabbit Dendrobium Shavin White |
Flowers | Phenols | Anti-oxidant, whitening | [85] | |
Dendrobium Topaz Dream×Dendrobium bigibbum | Plantlets | Quercetin | Anti-oxidant | [27] | |
Encyclia | Encyclia odoratissima | Flowers | / | Anti-aging | [10] |
Eulophia | Eulophia macrobulbon | Roots | Philanthropic | Anti-inflammatory, anti-oxidant | [86] |
Gastrodia | Gastrodia elata | Tubers, roots | Bis (4-hydroxybenzyl) sulfide | Whitening, anti-aging | [50, 87] |
Grammatophyllum | Grammatophyllum speciosum | Pseudobulbs, leaves | Asparagine, glycosides, tannins, flavonoids, alkaloids, saponins, coumarins | Anti-aging | [88, 89] |
Gymnadenia | Gymnadenia austriaca | Flowers | / | Anti-aging | [10] |
Himantoglossum | Himantoglossum robertianum | Bulbs, roots, flowers | Loroglossol, hircinol | Antioxidation, anti-aging, bacteriostasis | [48, 90] |
Liparis | Liparis nervosa | Whole plant | Nervosine Ⅶ, nervosine Ⅷ, paludisine, nervosine Ⅰ, blestriarene C, 2, 7, 2′-trihydroxy-4, 4′, 7′-trimethoxy-1, 1′-biphenyl, blestriarene B, blestriarene C, 2, 7, 2′-trihydroxy-4, 4′, 7′-trimethoxy-1, 1′-biphenyl, coelonin, (+)-pinoresinol, 2, 5-dihydroxy-4-methoxyphenanthrene, 2, 3, 7-dihydroxy-4-methoxyphenanthrene | Anti-inflammatory, anti-bacterial | [47] |
Maxillaria | Maxillaria tenuifolia | Flowers | / | Anti-aging | [10] |
Nigritella | Nigritella nigra | Flowers | / | Anti-aging | [10] |
Odontoglossum | Odontoglossum sp.Odontoglossum sp.×Cochlioda sp. | Flowers | Polysaccharides | Moisturizing | [14] |
Orchis | Orchis sp. | Whole plant or a part | / | Anti-aging | [73] |
Ophrys | Ophrys holosericea | Fresh inflorescences | Long-chain monounsaturated hydrocarbons, aldehydes, alcohols, terpenoids, acids | Fragrant, antioxidation | [59] |
Papilionanthe | Papilionanthe teres | Stems | Eucomic acid, vandaterosides (vanderoside Ⅱ) | Antioxidation, anti-aging, anti-inflammatory | [45, 91, 92] |
Phalaenopsis | Phalaenopsis sp. | Leaves, stems and roots | Tannin | Bacteriostasis | [93] |
Phalaenopsis amabilis | Leaves, whole plant | / | Antioxidation, anti-aging, DNA damage repair | [6, 94] | |
Doritaenopsis Tinny Ribbon×Doritaenopsis Plum Rose (Hybrid of Phalaenopsis and its relative genus) | Flowers | Apigenin 6-C-β-D-ribopyranosyl-7-O-β-D-glucopyranoside, saponarin, (3′, 7-di-O-sinapyl-glucosyl)-3-glucosyl cyanidin | Antioxidation, whitening | [31] | |
Phalaenopsis Green Field Sweet Valentine "Montclair" Phalaenopsis Sakura Hime Phalaenopsis Sogo Yukidian "V3" Phalaenopsis Chian Xen Queen Phalaenopsis Fusheng′s Bridal Dress "Meidarland" Phalaenopsis Younghome Golden Leopard "Peachy" |
Leaves, roots | Protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, ellagic acid, ferulic, p-coumaric, sinapic acids | Antioxidation | [43] | |
Serapias | Serapias orientalis subsp.orientalis | Above ground sections | Limonene, alpha-methoxy-p-cresol | Bacteriostasis | [95] |
Serapias vomeracea | Fresh inflorescences | Saturated hydrocarbons | Fragrant, antioxidation | [59] | |
Vanda | Vanda brunnea | Stems | / | Anti-aging, anti-inflammatory | [96] |
Vanda cristata | Stems | Polyphenols | Antioxidation | [25] | |
Vanda coerulea | Stems, roots | Imbricatin, methoxycoelonin, gigantol | Moisturizing, antio-xidation, anti-inflammatory | [42, 91, 97] | |
Vanda tessellata | Leaves | / | Antioxidation, anti-inflammatory | [98, 99] | |
Vanilla | Vanilla planifolia | Fruits | Vanillin | Antioxidation, anti-inflammatory, anti-aging | [46] |
Note: ‘/’ means the item is not expressed in the reference;Dendrobium officinale or Dendrobium catenatum is used as latin name of "铁皮石斛(Tiepi Shihu)" in the literatures, we use Dendrobium officinale in this article;Dendrobium candidum or Dendrobium moniliforme is used as latin name of "细茎石斛(Xijing Shihu)" in the literatures, we use Dendrobium moniliforme in this article |
2 兰科植物护肤美容机制
随着兰科植物中化学活性成分的进一步发现,兰科植物提取物或活性成分的作用机理也得到了更深入的认识。
2.1 保湿作用机制兰科植物对皮肤具有保湿作用,可通过调节水通道蛋白3 (AQP3)和淋巴上皮组织Kazal型相关蛋白抑制剂(LEKTI蛋白)的表达来增加皮肤水分。AQP3是人体皮肤上重要的水通道蛋白,可跨膜运输水、甘油和尿素等小分子物质,与皮肤表皮细胞水合作用、皮肤屏障修复功能密切相关[100]。LEKTI蛋白是一种蛋白酶抑制剂,在角质层下方的表皮颗粒层中表达,该蛋白的编码基因SPINK5突变会导致LEKTI蛋白的缺失,从而引起皮肤屏障功能紊乱,尤其是桥粒结构的破坏,而桥粒在防止水分蒸发方面发挥着重要作用[101]。研究表明,大花万代兰茎或根的极性溶剂提取物可通过调节AQP3的表达来增强皮肤角质层的水合作用,且可通过增加LEKTI蛋白的表达来减少桥粒结构的降解,加强桥粒的结构功能,改善表皮脱屑,从而提高皮肤屏障功能,达到补水保湿效果[91, 97]。
2.2 抗氧化作用机制具有抗氧化作用的兰科植物可通过清除自由基、提高抗氧化酶活性来达到抗氧化效果。Robustelli Della Cuna等[59]研究发现,倒距兰及倒距兰属植物A.coriophora subsp.fragrans、蜂兰属植物O.holosericea和长药兰属植物S.vomeracea花的精油具有浓度依赖性的DPPH自由基清除活性。Bazzicalupo等[90]研究发现,蜥蜴兰属植物H. robertianum花的70%乙醇提取物显示出剂量依赖性的强自由基清除活性。超氧化物歧化酶(SOD)及其同工酶(Cu/Zn-SOD)是重要的酶类抗氧化剂,它们构成了对抗活性氧诱导损害的第一道抗氧化屏障[102]。Huehne等[71]采用二维凝胶电泳和LC-MS/MS分析发现,石豆兰属植物Bulbophyllum morphologlorum、石斛属植物D.Sonia Earsakul的叶子和假鳞茎中参与氧化应激反应的蛋白质为Cu/Zn-SOD 1和Cu/Zn-SOD 2,且石豆兰属植物叶子上的Cu/Zn-SOD 2活性更高,表明石豆兰属植物可作为潜在的天然抗氧化剂来源。
2.3 抗炎作用机制兰科植物可通过抑制自由基NO的释放和炎症介质的分泌达到抗炎效果。Vijaykumar等[98]和Khan等[99]研究发现,黑珊瑚万代兰(V.tessellata)叶子的石油醚提取物在浓度为200 mg/mL时具有与姜黄素相近的NO自由基清除活性。UVB照射可上调HaCaT细胞环氧合酶2 (COX-2)的表达,进而促进PGE-2的合成,引起皮肤炎症反应[103]。Simmler等[42]研究发现,富含二苯乙烯类化合物的大花万代兰茎的90%乙醇提取物可抑制UVB-HaCaT细胞模型中PGE-2的释放,达到抗炎效果。Schuster等[86]研究发现,生长在亚洲南部的美冠兰属植物Eulophia macrobulbon根的50%乙醇提取物及其菲类化合物,显著减少了LPS刺激的巨噬细胞中促炎症细胞因子IL-6和TNF-α的产生,且降低了一氧化氮合成酶(iNOS)的表达,随后促进了抗炎症细胞因子白细胞介素10 (IL-10)的产生,因而具有抗炎作用。
2.4 美白作用机制兰科植物具有美白作用,可通过抑制酪氨酸酶或酪氨酸相关蛋白的活性来抑制黑色素的合成,或通过影响黑色素体的运输与转移来达到美白效果。
酪氨酸酶(TYR)、DHICA氧化酶(TRP-1)和多巴色素异构酶(TRP-2)是黑色素生成的3种关键酶。黑色素细胞特异性小眼相关转录因子(MITF)是黑色素细胞主要的调节因子,可调节TYR、TRP-1、TRP-2的转录[104]。Ko等[83]研究发现,细茎石斛叶的乙醇提取物二氯甲烷馏分可降低MITF蛋白水平,从而降低小鼠皮肤黑色素瘤细胞(B16F10)中TYR及其相关基因的表达,可作为一种抗黑色素生成剂。Park等[69]研究发现,台湾银线兰幼苗的70%乙醇和1, 3-丁二醇混合溶剂提取物可抑制TYR活性,减少B16小鼠黑色素瘤细胞中黑色素的含量。Chan等[79]研究发现,室温下黄石斛(原文D.tosaense)茎的50%乙醇提取物具有TYR抑制能力,IC50为(6.40±0.30) mg/mL;室温或50℃下的水提取物可显著降低促黑色素细胞激素(α-MSH)诱导的细胞黑色素含量。Park等[82]对人工培养的铁皮石斛不同部位的功效进行研究发现,嫩芽的70%乙醇和30% 1, 3-丁二醇混合溶剂提取物具有TYR活性和抑制黑色素合成的作用,可作为化妆品中的美白成分。Lin等[80]研究发现,经酵母菌或乳酸菌或枯草芽孢杆菌或以上3种混合菌发酵的铁皮石斛茎发酵液除了具有抗氧化和抗UVB作用外,还具有抑制TYR活性的功能。Athipornchai等[85]研究发现,泰国4种石斛栽培品种D.Sonia、D.Sonia Pink、D.Snow Rabbit和D.Shavin White花的乙醇提取物具有高于曲酸的TYR抑制活性。Kanlayavattanakul等[84]发现,石斛属植物D.Sonia Earsakul花的70%乙醇或水提取物在浓度为0.1 mg/mL或更高的浓度下可抑制B16F10细胞黑色素的生成,其中,70%乙醇提取物具有优于曲酸的TYR和TRP-2抑制活性,可作为一种改善色素沉着的化妆品成分。段营辉等[70]研究发现,白及块茎中的2-异丁基苹果酸葡萄糖氧基苄酯类提取物具有TYR抑制作用,可应用于制备黑色素生成抑制剂或美白剂的化妆品、医药品或皮肤外用剂,可预防、改善及治疗皮肤色素沉着。
另外,兰科植物还可通过抑制黑色素运输和转移相关基因的表达,阻断黑色素从黑色素细胞的树突转移至角质细胞,减少表皮色素沉着,达到美白的效果。Archambault等[75]发现,Brassayola和Cattleya的杂交属植物Brassocattleya Marcella KOSS茎或叶或茎叶混合的丁二醇提取物,能够抑制黑色素体形成过程和黑色素体向角质细胞运输过程中的重要基因AP3B2、GPR143、VAMP2、TYR、MCIR、SILV、AP3M2、STOML2和SNAP23的表达。相关临床评估与问卷调查也表明,3%该提取物的美白淡斑功效类似于3%维生素C衍生物[76]。
2.5 抗衰老作用机制兰科植物具有抗衰老作用,可通过抑制基质金属蛋白酶MMP、胶原蛋白酶、弹性蛋白酶活性,或通过增加过氧化氢酶、抑制炎症因子的释放,或通过增强细胞线粒体呼吸功能、控制细胞凋亡控制因子、强化皮肤细胞活力来减缓皮肤衰老。
胶原蛋白和弹性蛋白使皮肤丰润紧致,而MMP可特异性降解胶原蛋白和弹性蛋白,多数兰科植物可通过抑制MMP、胶原蛋白酶和弹性蛋白酶活性,促进胶原蛋白和弹性蛋白合成来延缓皮肤衰老。Kanlayavattanakul等[84]研究发现,石斛属植物D.Sonia Earsakul花的70%乙醇或水提取物可抑制胶原蛋白酶和弹性蛋白酶活性,且抑制效果优于阳性对照——表没食子儿茶素没食子酸酯(EGCG)和熊果酸,且可显著抑制正常人成纤维细胞(NHF)中的基质金属蛋白酶2 (MMP-2)活性,可作为一种抗衰老的化妆品成分。Rungruang等[77]研究发现,卡特兰近缘杂交属植物Rhyncholaeliocattleya Haw Yuan Beauty的提取物具有抗氧化性、抗弹性蛋白酶和抗胶原蛋白酶的活性,其粗提物可以作为化妆品中的抗衰老成分。Bazzicalupo等[90]研究发现,富含多酚的蜥蜴兰属植物H.robertianum花的70%乙醇提取物可清除自由基、抑制弹性蛋白酶和胶原蛋白酶,保持HaCaT细胞活力,可用于皮肤的保护、修复和抗衰老等方面。Chowjarean等[89]研究发现,皇后兰(Grammatophyllum speciosum)的假鳞茎乙醇提取物对弹性蛋白酶的活性抑制作用优于EGCG,且临床评估发现,使用添加量为0.5%(W∶W)的皇后兰提取物可以增加健康志愿者皮肤的扩张性、黏弹性,减少皱纹体积。核因子κB (NF-κB)蛋白可调节与皮肤老化过程有关的皮肤基因,包括MMP的基因[105]。Leblanc等[87]研究发现,天麻块茎的丁二醇提取物与吊瓜树(Kigelia africana)果的丁二醇提取物这两种物质的组合物可显著降低正常人角质形成细胞(KHN)中NF-κB的核表达,保持皮肤状态稳定。皮肤细胞中的COL1A1、COL1A2、ELN和HAS3等基因表达水平的提高可促进胶原蛋白、弹性蛋白和透明质酸的合成[106-108],皮肤细胞中的CAT和SOD2等基因表达水平的提高有助于增强皮肤细胞的抗氧化能力[109],同时生物体中的DNA修复基因如错配修复(MMR)、核苷酸切除修复(NER)和碱基切除修复(BER)基因可以防止突变或断裂引起的DNA损伤[110]。Lin等[94]研究发现,美丽蝴蝶兰叶愈伤组织的极性溶剂提取物可提高皮肤细胞中COL1A1、COL1A2、ELN、HAS3、CAT、SOD2、MMR、NER和BER基因的表达水平,从而有效促进胶原蛋白、弹性蛋白和透明质酸的合成、分泌,提高皮肤细胞对抗过氧化物损伤的能力,修复皮肤细胞中受损的DNA,从而达到延缓皮肤衰老的目的。
皮肤老化分为自然老化和光老化,多数兰科植物还可通过增加抗氧化酶如过氧化氢酶(CAT)、SOD和谷胱甘肽过氧化物酶(GSH-Px)的活性,减少脂质过氧化副产物硫代巴比妥酸反应物(TBARS)的积累,抑制炎症因子的释放来减缓紫外线暴露后产生的活性氧(ROS)引起的光老化皮肤衰老。研究发现,大花万代兰茎的90%乙醇粗提取物和凤蝶兰茎的10%乙醇提取物均可通过抗氧化、抗炎活性延缓紫外线照射后由ROS引起的衰老,具有抗衰老作用[42, 91, 92]。Mai等[81]研究发现,铁皮石斛原球茎(DOPs)水提取物可显著减少BALB/C-NU/NU无毛小鼠因紫外线照射引起的红斑,并保护皮肤免受干燥伤害,具有显著的抗光老化作用;在DOPs处理的小鼠中,CAT、SOD和GSH-Px表达水平提高,而TBARS和MMPs表达水平降低。Leplanquais等[96]研究发现,白柱万代兰(V.brunnea)茎的10%乙醇提取物可通过抑制HaCaT细胞中炎症介质白细胞介素-8 (IL-8)和PGE-2的分泌、增强NHF活力、抑制NHF中基质金属蛋白酶MMP-2和MMP-9活性、抑制HaCaT细胞膜脂质过氧化以及增加单层人类角质形成细胞(NHEK)中白细胞介素-10基因的表达来减缓皮肤老化。Leclere等[72]研究发现,添加有库氏天鹅兰(Cycnoches cooperi)全株的水或丙二醇植物提取物的组合物,可通过减少UVB-NHF细胞中炎症细胞因子的释放、降低基质金属蛋白酶3 (MMP-3)活性、促进NHF中的胶原蛋白生成来减缓皮肤老化。Bose等[74]研究发现,体外组织快繁培养的浅裂沼兰(Crepidium acuminatum)的叶和茎的甲醇提取物除了对引起皮肤老化相关的胶原蛋白酶、弹性蛋白酶、酪氨酸酶和黄嘌呤氧化酶显示出较高的抑制活性外,还对引起皮肤炎症反应相关的5-脂氧合酶和透明质酸酶显示出抑制作用,对体外的UVB和UVA辐射显示出光保护活性,可作为抗衰老成分。Yingchutrakul等[88]研究发现,皇后兰叶的水提取物具有清除自由基的作用,还可降低RAW264.7细胞中NO水平,抑制胶原蛋白酶活性,同样可作为抗衰老成分。
此外,有些兰科植物通过改善角质形成细胞中线粒体的呼吸功能、保持细胞活力减缓皮肤衰老。Hadi等[91]研究发现,凤蝶兰提取物中含有的Vandaterosides可通过增加角质形成细胞分化过程中内皮蛋白、桥粒芯糖蛋白-1和转谷氨酰胺酶-1的表达来改善皮肤活力;含有的eucomic acid和vandateroside Ⅱ可通过刺激HaCaT细胞中的细胞色素c氧化酶,改善角质形成细胞中线粒体的呼吸功能,从而具有抗衰老作用。凋亡抑制因子(IAP)可阻断半胱氨酸天冬氨酸蛋白酶(caspase)的激活并抑制成熟的caspases的活性,使细胞凋亡现象减慢。在应对紫外线辐射或活性氧等刺激时,成熟的线粒体蛋白(Smac/DIABLO)在细胞膜上释放,影响IAP抑制剂发挥作用或在二聚体的形式下与IAP的结合,诱导细胞凋亡[111]。Leplandquais等[78]研究发现,鼓槌石斛(D.chrysotoxum)花提取物对Smac/DIABLO的表达有抑制作用,并调控IAPs抑制caspases,减缓皮肤老化速度、增强细胞或组织活力。Amar等[73]研究发现,库氏天鹅兰提取物或红门兰属提取物对NHF的存活与代谢具有积极作用,可作为抗衰老剂。
2.6 抑菌作用机制兰科植物具有抑菌作用,该作用与其含有的抑菌物质如单宁、柠檬烯、α-甲氧基-对甲酚等相关。其中,单宁是一种多酚类物质,可以沉淀蛋白质,使微生物无法获得营养蛋白质,阻止微生物的发展和生长;柠檬烯具有破坏微生物的生物膜、影响微生物的能量代谢、破坏微生物DNA的结构或改变其功能、抑制微生物体内的酶或功能蛋白等作用;而α-甲氧基-对甲酚可用于合成化妆品抗氧化剂。Olivares等[93]采用斑点法研究发现,最具商业和经济价值的蝴蝶兰属植物Phalaenopsis spp.的干燥叶或茎或根的80%甲醇或70%乙醇提取物对痤疮病原体金黄色葡萄球菌、表皮葡萄球菌(S.epidermidis)和痤疮丙酸杆菌(Propionibacterium acnes)具有抑制作用,抑制活性与提取物中存在的酚类、单宁、黄酮类、皂苷、糖苷、类固醇、萜类和生物碱等有关。Er k等[95]根据琼脂扩散法研究发现,长药兰属植物S.orientalis subsp.orientalis地上部位的正己烷或甲醇或水提取物具有金黄色葡萄球菌抑菌活性,最低抑菌浓度分别为125.0 mg/mL、121.4 mg/mL、81.25 mg/mL,其抑制活性与主要成分柠檬烯、α-甲氧基-对甲酚有关。
除了保湿、抗氧化、抗炎、美白、抗衰老、抑菌等护肤美容作用外,兰科植物还可作为香精香料赋予产品芳香。Sharma等[112]归纳出已用于药妆的芳香兰花有多花指甲兰(Aerides rosea)、白及、虎头兰(C.hookerianum)、金钗石斛、蜥蜴兰属植物H.robertianum、红门兰属植物O.maculata、美丽蝴蝶兰、钻喙兰(R.retusa)、大花万代兰等。对产品香气贡献大的物质来源于兰科植物的萜烯类挥发性化合物,其在赋香工艺中的香型与产品的具体设计加工相关。目前,北京植物医生生物科技有限公司与昆明植物研究所利用香气特征制备了具有天然多花指甲兰和铁皮石斛花香香气组合物,且将组合物应用于日用化学品中赋香。
3 兰科植物化妆品原料应用现状根据《已使用化妆品原料目录(2021年版)》进行统计,我国境内生产、销售的化妆品所使用兰科植物有15属28种。其中,石斛属8种:细茎石斛、束花石斛(D.chrysanthum)、鼓槌石斛、流苏石斛、美花石斛、金钗石斛、铁皮石斛和蝴蝶石斛(D.bigibbum var.superbum);兰属3种:虎头兰、寒兰(C.kanran)、莲瓣兰(C.tortisepalum);蝴蝶兰属3种:美丽蝴蝶兰、P.anubis、罗氏蝴蝶兰(P.lobbii);香荚兰属2种:香荚兰、Vanilla × tahitensis;红门兰属2种:雄兰(O.mascula)、O.maculata;此外,还有大花万代兰、凤蝶兰、白及、虾脊兰(Calanthe discolor)、卡特兰杂交种Cattleya hybrida、库氏天鹅兰、天麻、斑叶兰(Goodyera schlechtendaliana)、Cypripedium parviflorum var.pubescens、Brassocattleya Marcella Koss。根据2014-2021年国家药品监督管理局备案数据(数据来源:美业颜究院http://www.beautydata.ai/)统计结果,我国兰科植物作为化妆品原料在化妆品中的应用呈现上升趋势(图 1),2014年备案产品仅823种,2021年备案产品已达20 956种。其中,我国重要传统中医药植物石斛、白及、天麻在化妆品兰科植物原料中位居前列,石斛属备案产品款数由2014年的116种上升至2021年的13 884种,铁皮石斛与金钗石斛提取物应用次数最多;白及属备案产品款数由2014年的504种上升为2021年的3 750种;天麻属备案产品款数由2014年的18种上升到2021年的2 017种。此外,蝴蝶兰属、香荚兰属、虾脊兰属植物的化妆品备案注册款数也比较多。统计表明,多数备案产品的品牌为植物医生、百雀羚、佰草集、阿芙等国产品牌。中国化妆品市场虽然起步较晚,但是随着现阶段科技水平的进步以及消费理念的改变,国产品牌迅速崛起,国产品牌植物医生、花西子等研发的添加有束花石斛、鼓槌石斛、流苏石斛、美花石斛、金钗石斛、铁皮石斛、蝴蝶石斛等石斛提取物的护肤、彩妆、口腔护理产品市场反映较好,占据了一定的市场份额。国产品牌自然堂、澳宝、雪玲妃等研发的添加有库氏天鹅兰提取物的护肤、洗护、洗涤产品在市场上也颇受欢迎。
4 展望
国家鼓励和支持运用现代科学技术,结合我国传统优势项目和特色植物资源研究开发化妆品。化妆品行业一直在寻找有价值的天然成分或具有相关生物活性的提取物来设计配方,兰科植物种类繁多且含有多种活性物质,在护肤美容方面具有巨大潜力,是护肤美容产业发展可以深入挖掘的特色植物。
目前,化妆品日用领域使用的兰科植物主要集中在石斛属、白及属、天麻属、虾脊兰属、兰属、红门兰属、蝴蝶兰属、香荚兰属等。兰科植物种类繁多,除已有研究类群外,还需要继续对兰科植物进行广泛的活性筛选与功能研究,探究不同兰科植物不同部位的活性成分及其作用机制,以挖掘更多具有特色功效的兰科植物原料。当前,兰科植物某些种类的护肤美容活性成分与作用机理虽然有一定研究,但是大量的功能活性与作用机理研究主要针对某兰花的总提取物或某个部位的提取物或某种馏分而开展,发挥作用的具体活性单体不完全清晰,仍需加强兰科植物护肤美容活性成分的分离、提纯与结构鉴定研究,同时可结合转录组学、代谢组学、基因组学等多组学技术,揭示活性成分的遗传基础、代谢通路与调控机制,为兰科植物护肤美容活性成分的开发和应用奠定基础。在护肤美容作用机理方面,已有的研究多停留在体外分子水平,须结合皮肤特点,采用皮肤细胞模型深入研究其作用于皮肤的信号通路,条件成熟时可增加相关临床研究。同时,可探究多种创新技术及其组合来提高兰科植物高活性提取物的使用率,以最大化发挥其在护肤美容方面的功效。
[1] |
FREIBERG M, WINTER M, GENTILE A, et al. LC-VP, the leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants[J]. Scientific Data, 2020, 7(1): 1-7. DOI:10.1038/s41597-019-0340-y |
[2] |
GOVAERTS R, NIC LUGHADHA E N, BLACK N, et al. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity[J]. Scientific Data, 2021, 8(1): 1-10. DOI:10.1038/s41597-020-00786-7 |
[3] |
CHRISTENHUSZ M J M, BYNG J W. The number of known plants species in the world and its annual increase[J]. Phytotaxa, 2016, 261(3): 201-217. DOI:10.11646/phytotaxa.261.3.1 |
[4] |
NAGASAWA S Y, KIZU Y. Green action as a luxury strategy in the field of cosmetics[J]. Waseda Business & Economic Studies, 2013, 48: 1-17. |
[5] |
MANS D, GRANT A. "A thing of beauty is a joy forever". Plants and plant-based preparations for facial care in Suriname[J]. Clinical and Medical Investigations, 2017, 2(4): 1-16. |
[6] |
NURFADILAH S. Utilization of orchids of Wallacea region and implication for conservation [C]//IOP Conference Series: Earth and Environmental Science. [S. l. ]: IOP Publishing, 2020, 473: 012063.
|
[7] |
杨柳, 胡江苗, 袁明焱, 等. 美花石斛提取物及其在制备化妆品中的应用: 201810023344. 2 [P]. 2018-05-18.
|
[8] |
杨柳, 胡江苗, 袁明焱, 等. 美花石斛化合物及其化妆品与应用: 202010709663. 6 [P]. 2020-10-27.
|
[9] |
胡江苗, 王雅琴, 杨柳, 等. 山药素Ⅲ在制备药品和化妆品中的应用: 201811380007. 5 [P]. 2019-05-31.
|
[10] |
GOLZ-BERNER K, ZASTROW L. Kosmetische zusa-mmensetzung mit anti-alterungswirkung: DE102008004665 [P]. 2009-07-16.
|
[11] |
刘玉超, 杨凯业, 刘光荣, 等. 多糖在皮肤领域的应用研究进展[J]. 中国美容医学, 2021, 30(7): 182-186. DOI:10.15909/j.cnki.cn61-1347/r.004547 |
[12] |
KANLAYAVATTANAKUL M, PAWAKONGBUN T, LOURITH N. Dendrobium orchid polysaccharide extract: Preparation, characterization and in vivo skin hydrating efficacy[J]. Chinese Herbal Medicines, 2019, 11(4): 400-405. DOI:10.1016/j.chmed.2019.03.012 |
[13] |
KANLAYAVATTANAKUL M, LOURITH N. Or-chid extracts and cosmetic benefits [M]//MÉRILLON J M, KODJA H. Orchids Phytochemistry, Biology and Horticulture. Reference Series in Phytochemistry. Cham: Springer, 2022: 609-626.
|
[14] |
SASAKI A, KAWAGUCHI M, HIMONO A. Extract produced from orchid family plant, method for production thereof, and preparation for external application to skin comprising extract produced from orchid family plant: EP09746438. 2 [P]. 2011-01-19.
|
[15] |
FAN Y, HE X, ZHOU S, et al. Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum[J]. International Journal of Biological Macromolecules, 2009, 45(2): 169-173. DOI:10.1016/j.ijbiomac.2009.04.019 |
[16] |
ZENG B, SU M, CHEN Q, et al. Antioxidant and hepatoprotective activities of polysaccharides from Anoectochilus roxburghii[J]. Carbohydrate Polymers, 2016, 153: 391-398. DOI:10.1016/j.carbpol.2016.07.067 |
[17] |
ROY M, DATTA A. Cancer genetics and therapeutics: Focus on phytochemicals[M]. Singapore: Springer, 2019.
|
[18] |
黄琴, 沈杨霞, 张成静, 等. 铁皮石斛多酚和黄酮含量及与抗氧化活性的相关性[J]. 应用与环境生物学报, 2014, 20(3): 438-442. |
[19] |
PAUDEL M R, CHAND M B, PANT B, et al. Cytotoxic activity of antioxidant-riched Dendrobium longicornu[J]. Pharmacognosy Journal, 2017, 9(4): 499-503. DOI:10.5530/pj.2017.4.81 |
[20] |
PAUDEL M R, CHAND M B, PANT B, et al. Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum[J]. Biomolecules, 2019, 9(9): 478. DOI:10.3390/biom9090478 |
[21] |
PAUDEL M R, CHAND M B, PANT B, et al. Antioxidant and cytotoxic activities of Dendrobium moniliforme extracts and the detection of related compounds by GC-MS[J]. BMC Complementary and Alternative Medicine, 2018, 18(1): 134. DOI:10.1186/s12906-018-2197-6 |
[22] |
CHIMSOOK T. Phytochemical screening, total phenolic content, antioxidant activities and cytotoxicity of Dendrobium signatum leaves[J]. 2016 3rd International Conference on Chemical and Food Engineering. MATEC Web of Conferences, 2016, 62: 03005. DOI:10.1051/matecconf/20166203005 |
[23] |
ABU F B. In vivo and in vitro studies of anti-aging properties of Dendrobium Sabin flower [D]. Negeri Selangor: Universiti Putra Malaysia, 2016.
|
[24] |
NAGANANDA G S, RAJATH S, SHANKAR P A, et al. Phytochemical evaluation and in vitro free radical scavenging activity of successive whole plant extract of orchid Cottonia peduncularis[J]. Biological Sciences, 2013, 3(4): 91-97. |
[25] |
CHAND M B, PAUDEL M R, PANT B. The antioxidant activity of selected wild orchids of Nepal[J]. Journal of Coastal Life Medicine, 2016, 4(9): 731-736. DOI:10.12980/jclm.4.2016J6-141 |
[26] |
WANG S Y, KUO Y H, CHANG H N, et al. Profiling and characterization antioxidant activities in Anoectochilus formosanus Hayata[J]. Journal of Agricultural and Food Chemistry, 2002, 50(7): 1859-1865. DOI:10.1021/jf0113575 |
[27] |
CHOTIPANICHSET S, ARAMRAK A, MAKETON C, et al. Investigation of phytochemicals and antioxidant activities in the extracts from orchid hybrid Dendrobium Topaz Dream×Dendrobium bigibbum (dtxdb) grown in tissue-cultured conditions[J]. Songklanakarin Journal of Plant Science, 2020, 7(2): 143-153. |
[28] |
LO S, MULABAGAL V, CHEN C, et al. Bioguided fr-actionation and isolation of free radical scavenging components from in vitro propagated Chinese medicinal plants Dendrobium tosaense Makino and Dendrobium moniliforme SW[J]. Journal of Agricultural and Food Chemistry, 2004, 52(23): 6916-6919. DOI:10.1021/jf040017r |
[29] |
SINGH C B, DEVI M C, THOKCHOM D S, et al. Phytochemical screening, estimation of total phenols, total flavonoids and determination of antioxidant activity in the methanol extract of Dendrobium denudans D. Don stems[J]. Journal of Pharmacognosy and Phytochemistry, 2015, 4(4): 6-11. |
[30] |
吕晓帆, 周新红, 王莹, 等. 秋石斛花青素提取液成分分析及其体外抗氧化活性和刺激性研究[J]. 热带亚热带植物学报, 2021, 29(4): 374-381. |
[31] |
LAM S, HUNG H, YANG M, et al. Chemical constituents from Phalaenopsis hybrids and their bioactivities[J]. Natural Product Communications, 2019, 14(5): 1-5. DOI:10.1177/1934578X19850688 |
[32] |
LI Y, WANG C L, WANG Y J, et al. Four new biben-zyl derivatives from Dendrobium candidum[J]. Chemical and Pharmaceutical Bulletin, 2009, 57(9): 997-999. DOI:10.1248/cpb.57.997 |
[33] |
LI Y, WANG C L, ZHAO H J, et al. Eight new biben-zyl derivatives from Dendrobium candidum[J]. Journal of Asian Natural Products Research, 2014, 16(11): 1035-1043. DOI:10.1080/10286020.2014.967230 |
[34] |
LI Y, WANG C L, WANG Y J, et al. Three new biben-zyl derivatives from Dendrobium candidum[J]. Chemical and Pharmaceutical Bulletin, 2009, 57(2): 218-219. DOI:10.1248/cpb.57.218 |
[35] |
ZHU L J, WANG M Q, QIN Y, et al. Two new diben-zyl derivatives from the stems of Dendrobium catenatum[J]. Journal of Asian Natural Products Research, 2021, 23(10): 955-960. DOI:10.1080/10286020.2020.1826937 |
[36] |
YANG D, LIU L, CHENG Z, et al. Five new phenolic compounds from Dendrobium aphyllum[J]. Fitoterapia, 2015, 100: 11-18. DOI:10.1016/j.fitote.2014.11.004 |
[37] |
SRITULARAK B, DUANGRAK N, LIKHITWITA-YAWUID K. A new bibenzyl from Dendrobium secundum[J]. Zeitschrift für Naturforschung C, 2011, 66(5/6): 205-208. |
[38] |
陈秀娟. 华石斛化学成分及其生物活性研究[D]. 海口: 海南大学, 2013.
|
[39] |
MA R J, YANG L, BAI X, et al. Phenolic constituents with antioxidative, tyrosinase inhibitory and anti-aging activities from Dendrobium loddigesii Rolfe[J]. Natural Products and Bioprospecting, 2019, 9(5): 329-336. DOI:10.1007/s13659-019-00219-y |
[40] |
LI Y, WANG C L, ZHAO H J, et al. A novel o-benzoquinol and a new bibenzyl from Dendrobium candidum[J]. Chemistry of Natural Compounds, 2015, 51(6): 1052-1054. DOI:10.1007/s10600-015-1489-z |
[41] |
KYOKONG N, MUANGNOI C, THAWEESEST W, et al. A new phenanthrene dimer from Dendrobium palpebrae[J]. Journal of Asian Natural Products Research, 2019, 21(4): 391-397. DOI:10.1080/10286020.2018.1429416 |
[42] |
SIMMLER C, ANTHEAUME C, LOBSTEIN A. An-tioxidant biomarkers from Vanda coerulea stems reduce irradiated HaCaT PGE-2 production as a result of COX-2 inhibition[J]. PLoS One, 2016, 5(10): e13713. |
[43] |
MINH T N, KHANG D T, TUYEN P T, et al. Phenolic compounds and antioxidant activity of Phalaenopsis orchid hybrids[J]. Antioxidants, 2016, 5(3): 31. DOI:10.3390/antiox5030031 |
[44] |
AXIOTIS E, ANGELIS A, ANTONIADI L, et al. Phytochemical analysis and dermo-cosmetic evaluation of Cymbidium sp. (Orchidaceae) cultivation by-products[J]. Antioxidants, 2021, 11(1): 101. DOI:10.3390/antiox11010101 |
[45] |
SIMMLER C, ANTHEAUME C, ANDRE P, et al. Glucosyloxybenzyl eucomate derivatives from Vanda teres stimulate HaCaT cytochrome c oxidase[J]. Journal of Natural Products, 2011, 74(5): 949-955. DOI:10.1021/np1006636 |
[46] |
LEE J, CHO J Y, LEE S Y, et al. Vanillin protects human keratinocyte stem cells against ultraviolet B irradiation[J]. Food and Chemical Toxicology, 2014, 63: 30-37. DOI:10.1016/j.fct.2013.10.031 |
[47] |
王星. 见血青的化学成分研究[D]. 上海: 上海交通大学, 2016.
|
[48] |
BADALAMENTI N, RUSSI S, BRUNO M, et al. Dihydrophenanthrenes from a sicilian accession of Himantoglossum robertianum (Loisel.) P. Delforge showed antioxidant, antimicrobial, and antiproliferative activities[J]. Plants (Basel), 2021, 10(12): 2776. |
[49] |
WANG Y H. Traditional uses and pharmacologically active constituents of Dendrobium plants for dermatological disorders: A review[J]. Natural Products and Bioprospecting, 2021, 11(5): 465-487. DOI:10.1007/s13659-021-00305-0 |
[50] |
CHEN W C, TSENG T S, HSIAO N W, et al. Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling[J]. Scientific Reports, 2015, 5(1): 1-8. DOI:10.9734/JSRR/2015/14076 |
[51] |
GAYTÁN V G, MENDOZA M, HERNÁNDEZ M S, et al. Volatile components in the flower, pedicellate ovary and aqueous residue of Cymbidium sp. (Orchidaceae)[J]. Journal of Analytical Sciences Methods & Instrumentation, 2013, 3(4): 212-218. |
[52] |
魏丹, 李祖光, 徐心怡, 等. HS-SPME-GC-MS联用分析3种兰花鲜花的香气成分[J]. 食品科学, 2013, 34(16): 234-237. DOI:10.7506/spkx1002-6630-201316047 |
[53] |
许红娟, 陈之林, 杜致辉, 等. 蕙兰守良梅花朵不同部位的花香成分[J]. 贵州农业科学, 2019, 47(10): 87-91. DOI:10.3969/j.issn.1001-3601.2019.10.019 |
[54] |
BAEK Y S, RAMYA M, AN H R, et al. Volatiles profile of the floral organs of a new hybrid Cymbidium, ′Sunny Bell′ using headspace solid-phase microextraction gas chromatography-mass spectrometry analysis[J]. Plants, 2019, 8(8): 251. DOI:10.3390/plants8080251 |
[55] |
JULSRIGIVAL J, SONGSAK T, KIRDMANEE C, et al. Determination of volatile constituents of Thai fragrant orchids by gas chromatography-mass spectrometry with solid-phase microextraction[J]. Chiang Mai University Journal of Natural Sciences, 2013, 12(1): 43-57. |
[56] |
HU J, HUANG W, ZHANG F, et al. Variability of volatile compounds in the medicinal plant Dendrobium officinale from different regions[J]. Molecules, 2020, 25(21): 5046. DOI:10.3390/molecules25215046 |
[57] |
张莹, 王雁, 李辛雷, 等. 不同石斛兰品种香气成分的GC-MS分析[C]//中国观赏园艺产业与西部开发——中国园艺学会观赏园艺专业委员会2011年学术年会. 中国观赏园艺研究进展2011. 北京: 中国林业出版社, 2011: 224-228.
|
[58] |
D′AURIA M, LORENZ R, MECCA M, et al. Aroma components of Cephalanthera orchids[J]. Natural Product Research, 2021, 35(1): 174-177. DOI:10.1080/14786419.2019.1616724 |
[59] |
ROBUSTELLI DELLA CUNA F S, CALEVO J, BARI E, et al. Characterization and antioxidant activity of essential oil of four sympatric orchid species[J]. Molecules, 2019, 24(21): 3878. DOI:10.3390/molecules24213878 |
[60] |
D′AURIA M, LORENZ R, MECCA M, et al. Fragran-ce components of Platanthera bifolia subsp. osca and Platanthera chlorantha collected in several sites in Italy[J]. Natural Product Research, 2020, 34(19): 2857-2861. DOI:10.1080/14786419.2019.1593166 |
[61] |
肖文芳, 李佐, 陈和明, 等. 大叶蝴蝶兰花朵挥发性成分测定[J]. 热带农业科学, 2020, 40(4): 82-87. |
[62] |
KIM S Y, RAMYA M, AN H R, et al. Floral volatile compound accumulation and gene expression analysis of Maxillaria tenuifolia[J]. Horticultural Science and Technology, 2019, 37(6): 756-766. |
[63] |
张莹, 田敏, 王彩霞, 等. 不同温度条件下香水文心兰花香气的成分分析及感官评定[J]. 植物资源与环境学报, 2015, 24(2): 112-114. DOI:10.3969/j.issn.1674-7895.2015.02.16 |
[64] |
BARTÁK P, BEDNÁŘ P, ČÁP L, et al. SPME-A valuable tool for investigation of flower scent[J]. Journal of Separation Science, 2003, 26(8): 715-721. DOI:10.1002/jssc.200301381 |
[65] |
MORALES-SÁNCHEZ V, RIVERO-CRUZ I, LAGUNA-HERNÁNDEZ G, et al. Chemical composition, potential toxicity, and quality control procedures of the crude drug of Cyrtopodium macrobulbon[J]. Journal of Ethnopharmacology, 2014, 154(3): 790-797. DOI:10.1016/j.jep.2014.05.006 |
[66] |
郑宝强, 王雁, 郭欣, 等. 杂种卡特兰'3G'不同花期香气成分的GC/MS分析[J]. 东北林业大学学报, 2014, 42(3): 33-36. DOI:10.3969/j.issn.1000-5382.2014.03.008 |
[67] |
YEH C H, CHEN K Y, CHOU C Y, et al. New insights on volatile components of Vanilla planifolia cultivated in Taiwan[J]. Molecules, 2021, 26(12): 3608. DOI:10.3390/molecules26123608 |
[68] |
BRUNSCHWIG C, ROCHARD S, PIERRAT A, et al. Volatile composition and sensory properties of Vanilla×tahitensis bring new insights for vanilla quality control[J]. Journal of the Science of Food & Agriculture, 2016, 96(3): 848-858. |
[69] |
PARK C M, JOUNG M S, PAEK K Y, et al. Inhibitory effect of jewel orchid (Anoectochilus formosanus) plantlet extract against melanogenesis and lipid droplet accumulation[J]. Journal of the Society of Cosmetic Scientists of Korea, 2010, 36(2): 145-150. |
[70] |
段营辉, 陈惠玲, 黄澜, 等. 白及中2-异丁基苹果酸葡萄糖氧基苄酯类提取物的制备方法及用途: 201911064832. 9 [P]. 2020-02-11.
|
[71] |
HUEHNE P S, BHINIJA K, SRISOMSAP C, et al. Detection of superoxide dismutase (Cu-Zn) isoenzymes in leaves and pseudobulbs of Bulbophyllum morphologlorum Kraenzl orchid by comparative proteomic analysis[J]. Biochemistry and Biophysics Reports, 2020, 22: 100762. DOI:10.1016/j.bbrep.2020.100762 |
[72] |
LECLERE J. Association a base d′extraits vegetaux et composition topique la contenant: FR0406003 [P]. 2006-09-22.
|
[73] |
AMAR C, LABOUREAU J, POTIN A, et al. Utilisation cosmetique d′un extrait d′orchidee male: FR0857382 [P]. 2010-04-30.
|
[74] |
BOSE B, CHOUDHURY H, TANDON P, et al. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 173: 686-695. DOI:10.1016/j.jphotobiol.2017.07.010 |
[75] |
ARCHAMBAULT J, CAUCHARD J H, LAZOU K, et al. : KR1020160092490 [P]. 2016-08-02.
|
[76] |
TADOKORO T, BONTE F, ARCHAMBAULT J C, et al. Whitening efficacy of plant extracts including orchid extracts on Japanese female skin with melasma and lentigo senilis[J]. The Journal of Dermatology, 2010, 37(6): 522-530. DOI:10.1111/j.1346-8138.2010.00897.x |
[77] |
RUNGRUANG R, PANICHAKUL T, RATTANAT-HAVORN W, et al. Effects of extraction methods on the flavonoid and phenolic contents and anti-aging properties of Rhyncholaeliocattleya Haw Yuan Beauty extracts[J]. Scienceasia, 2021, 47(6): 698-706. DOI:10.2306/scienceasia1513-1874.2021.100 |
[78] |
LEPLANDQUAIS V, ANDRE P, PECHER V, et al. Extrakt aus blüten der Dendrobium chrysotoxum und dessen kosmetische verwendung als anti-aging-mittel: DE102011053521 [P]. 2012-03-15.
|
[79] |
CHAN C F, WU C T, HUANG W Y, et al. Antioxidation and melanogenesis inhibition of various Dendrobium tosaense extracts[J]. Molecules, 2018, 23(7): 1810. DOI:10.3390/molecules23071810 |
[80] |
LIN Y, YANG T, SHEN L, et al. Study on the properties of Dendrobium officinale fermentation broth as functional raw material of cosmetics[J]. Journal of Cosmetic Dermatology, 2021, 21(3): 1216-1223. |
[81] |
MAI Y, NIU Z, HE W, et al. The reparative effect of Dendrobium officinale protocorms against photodamage caused by UV-irradiation in hairless mice[J]. Biological and Pharmaceutical Bulletin, 2019, 42(5): 728-735. DOI:10.1248/bpb.b18-00901 |
[82] |
PARK C M, KWON J C, HAN N K, et al. Comparative study of protocorm-like body and multiple shoots from Dendrobium candidum on biological activities[J]. Journal of the Society of Cosmetic Scientists of Korea, 2014, 40(1): 29-36. DOI:10.15230/SCSK.2014.40.1.29 |
[83] |
KO Y J, YANG S K, SONG S M, et al. Effect of Dendrobium moniliforme on melanogenic protein expression in B16F10 melanoma cells[J]. Journal of Biologically Active Products from Nature, 2015, 5(1): 12-17. DOI:10.1080/22311866.2014.983972 |
[84] |
KANLAYAVATTANAKUL M, LOURITH N, CHA-IKUL P. Biological activity and phytochemical profiles of Dendrobium: A new source for specialty cosmetic materials[J]. Industrial Crops & Products, 2018, 120: 61-70. |
[85] |
ATHIPORNCHAI A, JULLAPO N. Tyrosinase inhibitory and antioxidant activities of Orchid (Dendrobium spp.)[J]. South African Journal of Botany, 2018, 119: 188-192. DOI:10.1016/j.sajb.2018.09.003 |
[86] |
SCHUSTER R, ZEINDL L, HOLZER W, et al. Eulophia macrobulbon-An orchid with significant anti-inflammatory and antioxidant effect and anticancerogenic potential exerted by its root extract[J]. Phytomedicine, 2017, 24: 157-165. DOI:10.1016/j.phymed.2016.11.018 |
[87] |
LEBLANC E, NOTTE D, DUMAS M. Composition cosmétique comprenant des extraits de kigélia et d′orchidée: FR1913982 [P]. 2022-02-04.
|
[88] |
YINGCHUTRAKUL Y, SITTISAREE W, MAHAT-NIRUNKUL T, et al. Cosmeceutical potentials of Grammatophyllum speciosum extracts: Anti-inflammations and anti-collagenase activities with phytochemical profile analysis using an untargeted metabolomics approach[J]. Cosmetics, 2021, 8(4): 116. DOI:10.3390/cosmetics8040116 |
[89] |
CHOWJAREAN V, PHIBOONCHAIYANAN P P, HARIKARNPAKDEE S, et al. A natural skin anti-ageing serum containing pseudobulb ethanolic extract of Grammatophyllum speciosum: A randomized double-blind, placebo-controlled trial[J]. International Journal of Cosmetic Science, 2019, 41(6): 548-557. DOI:10.1111/ics.12571 |
[90] |
BAZZICALUPO M, BURLANDO B, DENARO M, et al. Polyphenol characterization and skin-preserving properties of hydroalcoholic flower extract from Himantoglossum robertianum (Orchidaceae)[J]. Plants, 2019, 8(11): 502. DOI:10.3390/plants8110502 |
[91] |
HADI H, RAZAL S N S, AWADH A I. A comprehensive review of the cosmeceutical benefits of Vanda species (Orchidaceae)[J]. Natural Product Communications, 2015, 10(8): 1483-1488. |
[92] |
LEPLANQUAIS V, SAUVAN N, PECHER V, et al. Cosmetic or dermatological composition containing an orchid extract, and cosmetic care method using said composition: US20110002968A1 [P]. 2011-01-06.
|
[93] |
OLIVARES C G. Studies on the inhibitory potential of orchid extracts against acne associated bacteria [D]. Valencia: Universitat Politècnica de València, 2020.
|
[94] |
LIN Y H, LI C S, KAN K W, et al. Method for protecting skin by using orchid callus extract: US20180289613A1 [P]. 2018-10-11.
|
[95] |
ERİK S, KILI G, ÖZTÜRK E, et al. Chemical composition, antimicrobial, and lipase enzyme activity of essential oil and solvent extracts from Serapias orientalis subsp. orientalis[J]. Turkish Journal of Chemistry, 2020, 44(6): 1655-1662. DOI:10.3906/kim-2005-51 |
[96] |
LEPLANQUAIS V, SAUVAN N, PECHER V, et al. Composition contenant un extrait de l′orchidee Vanda denisoniana: FR0759481 [P]. 2009-06-05.
|
[97] |
ANDRE P, ARCHAMBAULT J C, RENIMEL I. Use of an extract of the orchid Vanda coerulea as a skin hydrating agent: US008039028B2 [P]. 2011-10-18.
|
[98] |
VIJAYKUMAR K. In vitro anti-oxidant activity of pet-ether extract of Vanda tessellata Roxb[J]. International Ayurvedic Medical Journal, 2013, 1(5): 1-4. |
[99] |
KHAN H, MARYA, BELWAL T, et al. Genus Vanda: A review on traditional uses, bioactive chemical constituents and pharmacological activities[J]. Journal of Ethnopharmacology, 2018, 229: 46-53. |
[100] |
VERDIER-SÉVRAIN S, BONTÉ F. Skin hydration: A review on its molecular mechanisms[J]. Journal of Cosmetic Dermatology, 2007, 6(2): 75-82. DOI:10.1111/j.1473-2165.2007.00300.x |
[101] |
BENNETT K, CALLARD R, HEYWOOD W, et al. New role for LEKTI in skin barrier formation: Label-free quantitative proteomic identification of caspase 14 as a novel target for the protease inhibitor LEKTI[J]. Journal of Proteome Research, 2010, 9(8): 4289-4294. DOI:10.1021/pr1003467 |
[102] |
ALTOBELLI G G, NOORDEN S V, BALATO A, et al. Copper/Zinc superoxide dismutase in human skin: Current knowledge[J]. Frontiers in Medicine, 2020, 7: 183. DOI:10.3389/fmed.2020.00183 |
[103] |
蔡义文, 刘媛, 宋闯, 等. 化妆品抗敏安全性评价模型的研究进展[J]. 日用化学品科学, 2021, 44(3): 48-54. DOI:10.3969/j.issn.1006-7264.2021.03.012 |
[104] |
陈卓仪, 刘晓英, 郑雅婷, 等. 皮肤黑色素形成机理与干预机制[J]. 日用化学工业, 2019, 49(2): 113-117. DOI:10.3969/j.issn.1001-1803.2019.02.010 |
[105] |
WANG Y, WANG L, WEN X, et al. NF-κB signaling in skin aging[J]. Mechanisms of Ageing and Development, 2019, 184: 111160. DOI:10.1016/j.mad.2019.111160 |
[106] |
UITTO J, LI Q, URBAN Z. The complexity of elastic fibre biogenesis in the skin-A perspective to the clinical heterogeneity of cutis laxa[J]. Experimental Dermatology, 2013, 22(2): 88-92. DOI:10.1111/exd.12025 |
[107] |
QUAN T, QIN Z, XIA W, et al. Matrix-degrading metalloproteinases in photoaging[J]. Journal of Investigative Dermatology Symposium Proceedings, 2009, 14(1): 20-24. DOI:10.1038/jidsymp.2009.8 |
[108] |
TZELLOS T G, KLAGAS I, VAHTSEVANOS K, et al. Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes[J]. Experimental Dermatology, 2009, 18(12): 1028-1035. DOI:10.1111/j.1600-0625.2009.00889.x |
[109] |
SINHA S. Anti-oxidant gene expression imbalance, aging and down syndrome[J]. Life Sciences, 2005, 76(12): 1407-1426. DOI:10.1016/j.lfs.2004.10.026 |
[110] |
IYAMA T, WILSON D M. DNA repair mechanisms in dividing and non-dividing cells[J]. DNA Repair, 2013, 12(8): 620-636. DOI:10.1016/j.dnarep.2013.04.015 |
[111] |
KURITA-OCHIAI T, OCHIAI K. Butyric acid in-duces apoptosis via oxidative stress in Jurkat T-cells[J]. Journal of Dental Research, 2010, 89(7): 689-694. DOI:10.1177/0022034510365456 |
[112] |
SHARMA A, PATHAK P. The budding potential of orchids in the cosmeceutical sector: Role of orchids in skincare and health[J]. The Journal of the Orchid Society of India, 2020, 34: 79-85. |