广西科学院学报  2017, Vol. 33 Issue (3): 218-222   PDF    
金丝李生化性质研究进展
韩愈1,2 , 秦新民2 , 王满莲1 , 张俊杰1,3 , 韦霄1     
1. 广西植物研究所,广西桂林 541006;
2. 广西师范大学生命科学学院,广西桂林 541004;
3. 福建农林大学园艺学院,福建福州 350002
摘要: 生长于石灰岩山地的金丝李(Garcinia paucinervis)主要分布在广西西南和云南东南部,其枝叶树皮可作药材,有清热解毒、消肿的功效,其材质坚重,硬度大,耐腐、耐水性特强,可用于机械、军事、建筑等,有很高的经济价值。该植物具有抗肿瘤、抗病毒等药理作用,从该植物中分离得到呫吨酮类、苯甲酮类、萜类、缩酚酸环醚类、酚酸类等化学成分。本文阐述金丝李的生物学特性、化学成分、药理作用等方面的研究进展,为该植物的深入研究提供参考。
关键词: 金丝李     化学成分     药理作用     研究进展    
Research Development on the Biochemical Properties of Garcinia paucinervis
HAN Yu1,2 , QIN Xinmin2 , WANG Manlian1 , ZHANG Junjie1,3 , WEI Xiao1     
1. Guangxi Institute of Botany, Guilin, Guangxi, 541006, China;
2. College of Life Science, Guangxi Normal University, Guilin, Guangxi, 541004, China;
3. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
Abstract: Garcinia paucinervis are grown in the limestone mountainous region and mainly distributed in southwest of Guangxi and Southeast Yunnan.As a popular folk medicine, its branches and leaves bark can be used as medicine with the effect of heat clearing, detoxification and detumescence.With the properties of solid material, high hardness, corrosion resistance, strong water resistance, Garcinia paucinervis have a high economic value and are usually used in machinery, military, architecture, etc.Because of these plants having pharmacological actions of anti tumor and anti virus, some chemical components can be extracted, including ketone, benzophenones, terpene, depside ring ethers and phenolic acids.In this paper, we reviewed biological characteristic, chemical components and pharmacological actions of the Garcinia paucinervis, and the aim was to provide possible basis for helping scientists in future study.
Key words: Garcinia paucinervis     chemical components     pharmacological actions     advances of research    
0 引言

金丝李(Garcinia paucinervis)又名碎棉、老木、咪贵、麦贵,为藤黄科(Guttiferae)藤黄属(Garcinia Linn)植物,因资源日益减少而被定为国家Ⅱ级野生保护植物[1]。金丝李的主要分布区为广西西南部的左、右江流域,东北方向可至桂中峰丛石山区,北部可至东兰、河池、都安、田林、马山、巴马、凤山、西林等县,属南亚热带范围;其分布地纬度均低于北纬25°,其中龙州、大新、武鸣等地区为金丝李的天然分布区[2]。金丝李在云南省境内于滇东南部麻栗坡分布较多,越南北部也有部分分布,石灰岩地区的石山沟谷是其主要的自然生长环境,其垂直分布大多在海拔600 m以下,最高于海拔900 m处也有少量分布[3]。金丝李分布地属北热带范围,受东南季风的影响,年平均气温在21℃左右,极端最低气温也保持在0℃以上,分布区干湿季较为明显,年降水量为1 200~1 600 mm[2]。金丝李分布区狭窄,零星生长,由于过度采伐,大树已不多见,且其种子不易发芽,天然更新不良,已逐渐陷入濒危状态[4]

《中华草本》记载,金丝李的枝叶、树皮可作药材,有清热解毒、消肿的功效,主治痈肿疮毒、烫伤等。金丝李是广西优良的深色名贵硬木树种,与格木、蚬木、狭叶坡垒、紫荆木并称“广西五大硬木”[1],其材质坚重,结构致密,纹理通直,强度高,硬度大,耐腐、耐水性特强,是广西著名的铁木,广泛应用于机械、军事、造船、建筑和高级家具等领域,经济价值很高,是岩溶区极具开发价值的特色资源植物之一。本文对金丝李的生物学特性、化学成分、药理作用等研究现状进行阐述,为金丝李的资源保护、开发利用等提供借鉴。

1 生物学特性

金丝李是常绿乔木,树高达30 m,胸径可达1.5 m以上[4];树皮灰黑色,具白斑块。幼枝压扁状四棱形,暗紫色,干后具纵槽纹。叶片嫩时紫红色,膜质,老时近革质,椭圆形,椭圆状长圆形或卵状椭圆形,长8~14 cm,宽2.5~6.5 cm,顶端急尖或短渐尖,钝头、基部宽楔形,稀浑圆,干时上面暗绿色,下面淡绿或苍白,中脉在下面凸起,侧脉5~8对,两面隆起,至边缘处弯拱网结,第三级小脉蜿蜒平行,网脉连结,两面稍隆起;叶柄长8~15 mm,幼叶叶柄基部两侧具托叶各1枚,托叶长约1 mm。花杂性,同株。雄花的聚伞花序腋生和顶生,有花4~10朵,总梗极短;花梗粗壮,微四棱形,长3~5 mm,基部具小苞片2片;花萼裂片4枚,几等大,近圆形,长约3 mm;花瓣卵形,长约5 mm,顶端钝,边缘膜质,近透明;雄蕊多数(约300~400枚),合生成4裂的环,花丝极短,花药长椭圆形,2室,纵裂,退化雌蕊微四棱形,柱头盾状而凸起。雌花通常单生叶腋,比雄花稍大,退化雄蕊的花丝合生成4束,束柄扁,片状,短于子房,每束具退化花药6~8枚,柱头盾形,全缘,中间隆起,光滑,子房圆球形,高约2.5 mm,无棱,基生胚珠1个。果成熟时椭圆形或卵珠状椭圆形,长3.2~3.5 cm,直径2.2~2.5 cm,基部萼片宿存,顶端宿存柱头半球形,果柄长5~8 mm;种子1粒。花期6—7月,果期11—12月[5]

2 化学成分

近5年来研究人员从金丝李中分离得到了50余种化合物,包括呫吨酮类、苯甲酮类、萜类、缩酚酸环醚类、酚酸类等。

2.1 金丝李叶中的化学成分

Gao等[6]将金丝李叶片的丙酮提取物乙酸乙酯萃取部位进行分离纯化,分离出40个组分,鉴定出19个化合物,其中首次发现4种化合物Paucinervins A~D。另外已知的15种化合物分别是Guttiferone E[7]、Guttiferone I[8]、30-Epi-cambogin[9]、(+)-Guttiferone K[10]、Cambogin[10]、Garcicowin C[11]、Formoxanthone A[12]、Parvifolixanthone A[13]、1, 3, 7-Trihydroxy-2-prenylxanthone[14]、Jacareubin[15]、Nigrolineaxanthone E[16]、Cembrene A[17]、Parvifoliol F[13]、2-环己烯-c, g, 2, 6, 6-五甲基-1-壬醇[18]、Vitamin E quinone[19]。研究人员用Methylthiazol tetrazolium(MMT)法测定了4种新发现的化合物在Hela细胞的IC50值,发现Paucinervins B的IC50值最低为9.5 μmol,有可能成为一种新的抗癌药物。金丝李叶片的丙酮提取物用二氯甲烷萃取,得到4种新的化合物Paucinones A~D,化合物Paucinones A~C中含有环己烷螺四氢呋喃(Cyclohexane-spiro-tetrahydrofuran),首次报道了Paucinone D中发现的1-Methylene-3, 3-dimethylcyclohexane基团[20]。Wu等[21]从金丝李叶片的丙酮提取物中分离得到8个化合物,包括Paucinervin E、Paucinervin F、Paucinervin G 3个新的呫吨酮类化合物,其余5个类似物为Nigrolineaxanthone K[22]、5-O-methylxanthone V1[23]、Ananixanthone[24]、Cudraxanthone G[25]、Merguenone[26]

Li等[27]从金丝李叶片分离鉴定出14个化学成分,包括Paucinervins H~J、1, 3, 7-Trihydroxy-4-prenylxanthone[28]、3, 4, 6, 8-Tetrahydroxy-2-prenylxanthone[29]、1, 3, 5-Trihydroxy-2-prenylxanthone[30]、1, 3, 7, 8-Tetrahydroxy-2-prenylxanthone[31]、1, 7, 8-Trihydroxy-3-methoxyxanthone[32]、Atroviridin[33]、Jacareubin[15]、5, 9, 10-Trihydroxy-2, 2-dimethyl-8-(3-methyl-2-butenyl)-2H, 6H-pyrano[3, 2-b]xanthen-6-one[34]、7, 9, 12-Trihydroxy-2, 2-dimethyl-2H, 6H-pyrano[3, 2-b]xanthen-6-one[35]、Osajaxanthone[36]、Pyranojacareubin[37],其中Paucinervins H~J为首次发现。

2.2 金丝李茎中的化学成分

范青飞等[38]从金丝李的茎皮乙醇提取物中分离得到10个化合物,经光谱分析,分别鉴定为Cambogin (1)、焦袂康酸(Pyromeconic acid,2)、β-谷甾醇(β-Sitosterol,3)、胡萝卜苷(Daucosterol,4)、7-Prenyljacareubin (5)、Parvifolixanth one A (6)、Formoxanthone A (7)、Term icalcicolanone A(8)、1, 3, 5, 6-Tetrahy droxy-4-prenylxanthone (9)、Isogarcinol (10)。Hu等[39]从金丝李茎的丙酮提取物中分离得到5个化合物,经鉴定包括黄酮类化合物Pauciaurone A、Pauciisoflavone A,异黄酮类化合物Irigenin[40]、Lupalbigenin[41]、Isolupalbigenin。

3 药理作用 3.1 抗肿瘤作用 3.1.1 诱导细胞凋亡

Gao等[6]采用从金丝李叶片中分离得到的化合物进行抗肿瘤实验,发现在25 μmol低浓度下Paucinervins B、Cambogin、Jacareubin、Guttiferone E、Guttiferone I、(+)-Guttiferone K、Garcicowin C、Formoxanthone A 8个提取物在72 h内可激活Hela-C3细胞中的Caspase-3,使YFP/CFP发射率低于或接近3,并造成细胞脱落、收缩和细胞活力的降低,表现出诱导细胞凋亡的作用,其中化合物(+)-Guttiferone K、Cambogin、Garcicowin C和Jacareubin表现出更强的对细胞凋亡的诱导作用,可作为潜在的抗癌候选药物。

3.1.2 细胞毒作用

Gao等[20]首次报道了金丝李叶片提取物有细胞毒活性,其提取到的4个化合物Paucinones A、Paucinones B、Paucinones C、Paucinones D对Hela细胞具有细胞毒性,其IC50分别为(10±0.5) μmol、(8.2±0.8) μmol、(24.3±0.6) μmol、(5.8±0.6) μmol,其中Paucinones A、Paucinones B、Paucinones D的IC50值接近或低于10 μmol,对Hela细胞有非常强的生长抑制作用。Hu等[39]从金丝李茎中分离得到的Pauciaurone A对NB4、A549、SH-SY5Y、PC3和MCF7可能有细胞毒活性,Pauciisoflavone A则对NB4、SH-SY5Y和MCF7有潜在的细胞毒活性。

3.1.3 抑制恶性细胞增殖

Li等[27]采用MTT法检测从金丝李分离的化合物对HL-60细胞株生长的抑制作用,发现分离到的14个化合物均能产生抑制作用,特别是含异戊二烯基团的Paucinervins H、3, 4, 6, 8-Tetrahydroxy-2-prenylxanthone、1, 3, 5-Trihydroxy-2-prenylxanthone和1, 3, 7, 8-Tetrahydroxy-2-prenylxanthone表现出更强的抑制效果,IC50值分别为1.30 μmol,4.97 μmol,6.06 μmol,9.08 μmol。范青飞等[38]采用同样的方法对分离到的化合物进行抗肿瘤活性筛选,发现化合物7-Prenyljacareubin和Formoxanthone A对HL-60、SMMC-7721、A549、MCF-7和SW480细胞株均有一定的抑制作用。化合物7-Prenyljacareubin对结肠癌SW480细胞抑制活性明显强于阳性对照药顺铂。

3.2 抗病毒作用

Wu等[21]采用半叶法检测金丝李叶片提取物的抗烟草花叶病毒活性,化合物Paucinervin E、Paucinervin F和Paucinervin G均表现出抗烟草花叶病毒的活性,对病毒的抑制率为20%,3种化合物中Paucinervin E的IC50值最低为21.4 μmol,原因可能是Paucinervin E中含有羟基团。

4 展望

近年来的研究发现,金丝李在抗肿瘤和抗病毒方面具有很好的效果,然而,金丝李的研究主要集中在化学成分提取与鉴定、药理学作用等方面,具体的有效成分及其合成调控机理、抗肿瘤作用机制等研究还比较少,而且对金丝李药理作用的临床应用及其临床毒性研究未有所闻,这阻碍了金丝李药用价值的开发应用。另一方面,金丝李材质优良,可做多种用材,经济价值很高。但由于过度砍伐,现大树已经不多见,加之其生长较慢,短期内没有收入,造林成活率低,种源较为缺乏,且目前对金丝李的形态、生理、栽培以及组培等生物学方面的研究比较少,因此对其快速大规模繁育也未能实现。根据目前的研究状况,今后应加强种质资源收集、保存和快速繁殖等基础研究,进一步开展种质创新和野生植物的驯化栽培试验也已刻不容缓。

参考文献
[1]
梁瑞龙. 金丝李:广西铁木[J]. 广西林业, 2015(3): 24-25.
LIANG R L. Garcinia paucinervis: Guangxi hardwood[J]. Forestry of Guangxi, 2015(3): 24-25.
[2]
冯志舟. 金丝李[J]. 百科知识, 2011(16): 45.
FENG Z Z. Garcinia paucinervis[J]. Encyclopedic Knowledge, 2011(16): 45.
[3]
冯志舟. 硬木——金丝李[J]. 云南林业, 2012, 33(2): 69.
FENG Z Z. Hardwood-Garcinia paucinervis[J]. Yunnan Forestry, 2012, 33(2): 69.
[4]
郭涛, 周少英, 陈桂丹. 金丝李木材特征及其美学价值[J]. 中国木材, 2010(5): 12-13.
GUO T, ZHOU S Y, CHEN G D. Wood characteristics and aesthetic value of golden about Garcinia paucinervis[J]. Chinese Wood, 2010(5): 12-13.
[5]
中国科学院中国植物志编辑委员会. 中国植物志(50卷)[M]. 北京: 科学出版社, 1990: 101-102.
Editorial Committee of Chinese Flora of the Chinese Academy of Sciences. Flora of China (Volume 50)[M]. Beijing: Science Press, 1990: 101-102.
[6]
GAO X M, YU T, LAI F S F, et al. Novel polyisoprenylated benzophenone derivatives from Garcinia paucinervis[J]. Tetrahedron Letters, 2010, 51(18): 2442-2446. DOI:10.1016/j.tetlet.2010.02.147
[7]
ROUX D, HADI H A, THORET S, et al. Structure-activity relationship of polyisoprenyl benzophenones from Garcinia pyrifera on the tubulin/microtubule system[J]. Journal of Natural Products, 2000, 63(8): 1070-1076. DOI:10.1021/np0000872
[8]
HERATH K, JAYASURIYA H, ONDEYKA J G, et al. Guttiferone Ⅰ, a new prenylated benzophenone from Garcinia humilis as a liver X receptor ligand[J]. Journal of Natural Products, 2005, 68(4): 617-619. DOI:10.1021/np050045j
[9]
FULLER R W, BLUNT J W, BOSWELL J L, et al. Guttiferone F, the first prenylated benzophenone from Allanblackia stuhlmannii[J]. Journal of Natural Products, 1999, 62(1): 130-132. DOI:10.1021/np9801514
[10]
沈杰, 杨峻山. 云南山竹子中的一个新奇的苯甲酮类化合物[J]. 化学学报, 2007, 65(16): 1675-1678.
SHEN J, YANG J S. A novel benzophenone from Garcinia cowa[J]. Acta Chimica Sinica, 2007, 65(16): 1675-1678. DOI:10.3321/j.issn:0567-7351.2007.16.026
[11]
XU G, KAN W L T, ZHOU Y, et al. Cytotoxic acylp-hloroglucinol derivatives from the twigs of Garcinia cowa[J]. Journal of Natural Products, 2010, 73(2): 104-108. DOI:10.1021/np9004147
[12]
LEE S B, CHEN C M.Compounds isolated from gamboge resin having activity in inhibiting the growth of tumor/cancer cells and pharmaceutical compositions comprising the same:USA, 20050261363[P].2005-11-24.
[13]
RUKACHAISIRIKUL V, NAKLUE W, PHONGPA- ICHIT S, et al. Phloroglucinols, depsidones and xanthones from the twigs of Garcinia parvifolia[J]. Tetrahedron, 2006, 62(36): 8578-8585. DOI:10.1016/j.tet.2006.06.059
[14]
ITO C, MIYAMOTO Y, RAO K S, et al. A novel dibenzofuran and two new xanthones form calophyllum panciflorum[J]. Chemical and Pharmaceutical Bulletin, 1996, 44(2): 441-443. DOI:10.1248/cpb.44.441
[15]
ZHONG F F, CHEN Y, WANG P, et al. Xanthones from the bark of Garcinia xanthochymus and their 1, 1-diphenyl-2-picrylhydrazyl radical-scavenging activit[J]. Chinese Journal of Chemistry, 2009, 27(1): 74-80. DOI:10.1002/cjoc.v27:1
[16]
RUKACHAISIRIKUL V, RITTHIWIGROM T, PINSA A, et al. Xanthones from the stem bark of Garcinia nigrolineata[J]. Phytochemistry, 2003, 64(6): 1149-1156. DOI:10.1016/S0031-9422(03)00502-8
[17]
MATTERN D L, SCOTT W D, MCDANIEL C A, et al. Cembrene a and a congeneric ketone isolated from the paracloacal glands of the Chinese alligator (Alligator sinensis)[J]. Journal of Natural Products, 1997, 60(8): 828-831. DOI:10.1021/np970129v
[18]
KAMISAKA H, SHAKU M.Moisturizing cosmetics containing hydrogenated retinols:Japan, JPS6483007(A)[P].1987-09-24.
[19]
DOWD P, ZHENG Z B. On the mechanism of the anticlotting action of vitamin E quinone[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(18): 8171-8175. DOI:10.1073/pnas.92.18.8171
[20]
GAO X M, YU T, LAI F S F, et al. Identification and evaluation of apoptotic compounds from Garcinia paucinervis[J]. Bioorganic & Medicinal Chemistry, 2010, 18(14): 4957-4964.
[21]
WU Y P, ZHAO W, XIA Z Y, et al. Three novel xanthones from Garcinia paucinervis and their anti-TMV activity[J]. Molecules, 2013, 18(8): 9663-9669. DOI:10.3390/molecules18089663
[22]
RUKACHAISIRIKUL V, KAMKAEW M, SUKAV- ISIT D, et al. Antibacterial xanthones from the leaves of Garcinia nigrolineata[J]. Journal of Natural Products, 2003, 66(12): 1531-1535. DOI:10.1021/np0303254
[23]
THOISON O, CUONG D D, GRAMAIN A, et al. Further rearranged prenylxanthones and benzophenones from Garcinia bracteata[J]. Tetrahedron, 2005, 61(35): 8529-8535. DOI:10.1016/j.tet.2005.05.091
[24]
BAYMA J C, ARRUDA M S P, NETO M S. A prenylated xanthone from the bark of symphonia globulifera[J]. Phytochemistry, 1998, 49(4): 1159-1160. DOI:10.1016/S0031-9422(98)00085-5
[25]
HANO Y, MATSUMOTO Y, SUN J Y, et al. Structures of three new isoprenylated xanthones, cudraxanthones E, F, and G 1, 2[J]. Planta Medica, 1990, 56(4): 399-402. DOI:10.1055/s-2006-960993
[26]
NGUYEN L H D, VO H T, PHAM H D, et al. Xanthones from the bark of Garcinia merguensis[J]. Phytochemistry, 2003, 63(4): 467-470. DOI:10.1016/S0031-9422(02)00433-8
[27]
LI D H, LI C X, JIA C C, et al. Xanthones from Garcinia paucinervis with in vitro anti-proliferative activity against HL-60 cells[J]. Archives of Pharmacal Research, 2016, 39(2): 172-177. DOI:10.1007/s12272-015-0692-6
[28]
LIN C F, CHEN Y J, HUANG Y L, et al. A new auronol from Cudrania cochinchinensis[J]. Journal of Asian Natural Products Research, 2012, 14(7): 704-707. DOI:10.1080/10286020.2012.682305
[29]
ZHOU Y, HAN Q B, SONG J Z, et al. Characterization of polyprenylated xanthones in Garcinia xipshuanbannaensis using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1206(2): 131-139. DOI:10.1016/j.chroma.2008.08.042
[30]
GARCIA CORTEZ D A, YOUNG M C M, MARSTON A, et al. Xanthones, triterpenes and a biphenyl from Kielmeyera coriacea[J]. Phytochemistry, 1998, 47(7): 1367-1374. DOI:10.1016/S0031-9422(97)00731-0
[31]
BENNETT G J, LEE H H, LEE L P. Synthesis of minor xanthones from Garcinia mangostana[J]. Journal of Natural Products, 1990, 53(6): 1463-1470. DOI:10.1021/np50072a010
[32]
XIAO H, LU Y, CHEN Z N, et al. New xanthones from Swertia decora[J]. Journal of Chinese Pharmaceutical Sciences, 2001, 10(4): 172-174.
[33]
KOSIN J, RUANGRUNGSI N, ITO C, et al. A xanthone from Garcinia atroviridis[J]. Phytochemistry, 1998, 47(6): 1167-1168. DOI:10.1016/S0031-9422(98)80095-2
[34]
MONACHE G D, MONACHE F D, WATERMAN P G, et al. Minor xanthones from Rheedia gardneriana[J]. Phytochemistry, 1984, 23(8): 1757-1759. DOI:10.1016/S0031-9422(00)83485-8
[35]
NGUYEN L H D, VENKATRAMAN G, SIM K Y, et al. Xanthones and benzophenones from Garcinia griffithii and Garcinia mangostana[J]. Phytochemistry, 2005, 66(14): 1718-1723. DOI:10.1016/j.phytochem.2005.04.032
[36]
CHANG C H, LIN C C, HATTORI M, et al. Four prenylated xanthones from Cudrania cochinchinensis[J]. Phytochemistry, 1989, 28(2): 595-598. DOI:10.1016/0031-9422(89)80058-5
[37]
WATERMAN P G, CRICHTON E G. Xanthones and biflavonoids from Garcinia densivenia stem bark[J]. Phytochemistry, 1980, 19(12): 2723-2726. DOI:10.1016/S0031-9422(00)83950-3
[38]
范青飞, 纳智, 胡华斌, 等. 金丝李茎皮化学成分研究[J]. 中草药, 2012, 43(3): 436-439.
FAN Q F, NA Z, HU H B, et al. Chemical constituents from stem barks of Garcinia paucinervis[J]. Chinese Traditional and Herbal Drugs, 2012, 43(3): 436-439.
[39]
HU Q F, MENG Y L, YAO J H, et al. Flavonoids from Garcinia paucinervis and their biological activities[J]. Chemistry of Natural Compounds, 2014, 50(6): 994-997. DOI:10.1007/s10600-014-1144-0
[40]
ILYAS M, KAMIL M, PARVEEN M, et al. Isoflavones from Garcinia nervosa[J]. Phytochemistry, 1994, 36(3): 807-809. DOI:10.1016/S0031-9422(00)89823-4
[41]
DEACHATHAI S, MAHABUSARAKAM W, PHONGPAICHIT S, et al. Phenolic compounds from the fruit of Garcinia dulcis[J]. Phytochemistry, 2005, 66(19): 2368-2375. DOI:10.1016/j.phytochem.2005.06.025