严重急性呼吸综合征冠状病毒2 (Severe Acute Respiratory Syndrome Coronavirus 2,SARS-CoV-2)是一种以单股正链RNA (+ssRNA)为遗传物质的β-冠状病毒。在缺乏特异性治疗措施的情况下,疫苗是新型冠状病毒感染防控的重要手段[1]。截至2022年7月3日,WHO统计数据表明全球共有286项在研COVID-19疫苗,包括蛋白质亚单位疫苗、病毒载体(非复制)疫苗、DNA疫苗、灭活疫苗、RNA疫苗、病毒载体(复制)疫苗、病毒样颗粒疫苗、复制病毒载体(Replicating virus vector,VVr)抗原呈递细胞疫苗、减毒疫苗、非复制病毒载体(Non-replicating viral vector,VVnr)抗原呈递细胞疫苗等10多种疫苗[2],其中有17款疫苗在全球上市使用。国家卫健委最新统计数据表明,我国累计接种COVID-19疫苗34.9亿剂次。在全球大规模接种背景下,疫苗的安全性和有效性同样重要。
目前,临床上接种COVID-19疫苗后出现的不良反应以注射部位肌肉疼痛、发热等症状最为常见,但也会出现像心肌炎、房颤这类具有较高死亡率的严重不良反应[3]。COVID-19疫苗相关性心肌炎是指在接种COVID-19疫苗后,出现以心肌的局限性或弥漫性的炎性病变为主要表现的疾病。在美国,超过3.5亿剂疫苗接种中出现了近1 300例心肌炎相关的报告,不仅如此,在美国和以色列等地都出现了疫苗相关性心肌炎的死亡病例[3]。由于全球范围内已有多例COVID-19疫苗相关性心肌炎导致死亡的病例报道,对接种人群的健康危害较大,因此本文对COVID-19疫苗相关性心肌炎的发生概况及其可能的发生机制进行了归纳总结,发现疫苗相关性心肌炎的发生与疫苗的类型、接种剂次、接种人群特征甚至是制备工艺等因素都存在相关性,期望研究者在未来能结合临床数据开展更多的基础研究,以明确疫苗相关性心肌炎发生的具体机制,从而为新型疫苗研发、疫苗制备工艺优化、疫苗接种策略制订以及疫苗相关性心肌炎的防治等提供更多理论依据。
1 COVID-19疫苗相关性心肌炎一般情况分析 1.1 不同地区COVID-19疫苗相关性心肌炎发生概况 1.1.1 美国地区病例概况自2020年12月至2021年9月,在美国的3.5亿剂疫苗接种中报告了近1 300例疫苗相关性心肌炎病例,即每10万剂疫苗约有3例(0.003%)[4]。其发生率超出美国疾病控制与预防中心(CDC)统计预测的2倍(1.26例/10万剂)[5]。疫苗接种后心肌炎的实际发生率显著高于疫苗研发者的预期数值[5],提示COVID-19疫苗接种诱发心肌炎这一不良反应的概率明显被低估。不仅如此,由于临床上COVID-19疫苗相关性心肌炎易与其他慢性心脏疾病混淆,可能存在漏诊的情况,因此COVID-19疫苗相关性心肌炎的真实发生率可能比报告数据更高。
1.1.2 西亚地区病例概况2021年6月以色列卫生部公布了一组COVID-19疫苗相关性心肌炎发生率数据,该数据显示,第一次接种疫苗后90 d内心肌炎的发生率约为4.0例/100万人,第二次接种疫苗后90 d内心肌炎的发生率约为23.4例/100万人,较首次接种疫苗后,心肌炎发生率约提高了6倍[6]。这提示COVID-19疫苗相关性心肌炎的发生不仅与疫苗接种有关,还与疫苗接种的剂次相关[7, 8]。在以色列一项对接种COVID-19疫苗后死亡病例的死因调查研究中发现, 5%的死亡病例其死因是心肌炎,该结果进一步明确了心肌炎与COVID-19疫苗接种之间的联系[7]。
1.1.3 欧洲地区病例概况德国Paul-Ehrlich研究所在2021年8月19日发布的COVID-19疫苗接种报告中公布了来自不同公司的mRNA疫苗接种后心肌炎的发生率[9]。其中,接种BNT162b2疫苗(辉瑞疫苗)的心肌炎发生率为5.69例/100万剂,接种mRNA-1273疫苗(Moderna疫苗)的心肌炎发生率为0.58例/100万剂[10-12]。
为进一步明确心肌炎与COVID-19疫苗之间的相关性,意大利国家卫生研究院于2020年12月在意大利开展了一项多区域自我对照病例系列研究(SCCS),该研究是一项针对40岁以下人群开展的心肌炎/心包炎与COVID-19 mRNA疫苗接种之间的相关性调查[13]。在该项研究中,研究对象人群共计接种了超500万剂的COVID-19 mRNA疫苗,其心肌炎/心包炎的累计发生率约为86例/100万剂,显著高于基础预估的发生水平(3例/100万剂),提示40岁以下人群的COVID-19 mRNA疫苗接种与心肌炎/心包炎发生存在相关性[13],且其发生率高于美国地区数据[4]。
1.1.4 东亚地区病例概况中国香港医院管理局和卫生署开展了一项COVID-19疫苗相关性心肌炎的病例对照研究,期望通过该研究来验证心肌炎与接种不同种类疫苗之间是否存在关联性[14]。在这项研究中,接种mRNA疫苗后心肌炎的总发生率为93例/100万剂,显著高于灭活疫苗(47例/100万剂)[14]。截至2021年11月14日,日本累计报告了476例COVID-19疫苗相关性心肌炎病例(其中281例接种BNT162b2疫苗,195例接种mRNA-1273疫苗),疫苗相关性心肌炎的发生率约为15.5例/100万剂[15]。
从不同地区的数据可以看出,心肌炎的发生与COVID-19疫苗接种存在明确的关联性,但是在不同地区间其发生率存在较大的差别。考虑到不同地区接种的疫苗类型可能存在差异,因此本文对接种不同类型疫苗的人群的心肌炎发生情况进行了归纳。
1.2 不同类型COVID-19疫苗相关性心肌炎概况 1.2.1 mRNA疫苗CDC分析了2020年12月29日至2021年6月11日报告的30岁以下人群接种疫苗后疑似心肌炎的病例数据,结果发现其中有323例符合CDC定义的心肌炎标准[16]。这323例心肌炎患者所接种的疫苗分别是BNT162b2疫苗和mRNA-1273疫苗,均为mRNA疫苗[16]。综合所有病例报道均以男性居多,但病程相对较轻,仅出现极少数死亡病例[16-21]。在欧洲,德国接种BNT162b2疫苗的心肌炎发生率为5.69例/100万剂,接种mRNA-1273疫苗的心肌炎发生率为0.58例/100万剂[9-12]。上述数据显示尽管接种的疫苗类型均为mRNA疫苗,但是接种辉瑞疫苗后心肌炎的发生率较Moderna疫苗高出近10倍。另外,在意大利接种mRNA疫苗后确诊为心肌炎的441病例中,接种BNT162b2疫苗(辉瑞疫苗)占78.5%,接种mRNA-1273疫苗(Moderna疫苗)占21.5%[13]。由此可见,相同类型的疫苗导致心肌炎发生的概率在不同的制造商之间也存在一定差异,这也提示心肌炎的发生可能与制作工艺有关[15]。
1.2.2 腺病毒载体疫苗Singh等[22]调查认为导致COVID-19疫苗相关性心肌炎的腺病毒载体疫苗主要有AZD1222、ChAdOx1-S1、Ad26、COV2.S以及Sputnik VrAd26/rAd5。在这几种疫苗所引起的疫苗相关性心肌炎的病例中,均出现心悸、心电图异常等临床表现[4]。不过,在接种ChAdOx1-S1疫苗后发生心肌炎的人群中以60岁以上的老年人居多,占比74%,而接种Ad26疫苗所引发的心肌炎人群中以男性居多(65%),发病年龄暂未发现明显差异[4]。总体看来,腺病毒载体疫苗所导致的疫苗相关性心肌炎预后均较好,且不同种类腺病毒载体疫苗接种后导致的心肌炎的发生率无显著差异。
1.2.3 灭活疫苗在中国香港,还针对不同疫苗类型与心肌炎发生的关联性进行了分析[13],研究结果指出,接种灭活疫苗(CoronaVac)后,心肌炎发生率为0.31例/10万剂;接种mRNA疫苗(BNT162b2)后,心肌炎发生率为0.57例/10万剂,由此可见,接种mRNA疫苗后心肌炎的发生率较灭活疫苗高[13]。
截至2022年1月,临床上报道发生COVID-19疫苗相关性心肌炎的疫苗包含mRNA疫苗、腺病毒载体疫苗以及灭活疫苗3种类型共6款疫苗,每款疫苗接种后发生疫苗相关性心肌炎的简要情况如表 1所示。
疫苗类型 Vaccine type |
名称 Name |
制造商 Manufacturer |
临床表现 Clinical reaction |
一般资料 General information |
接种次数与发生率 Inoculation times and incidence |
预后情况 Prognosis |
数据来源 Data sources |
|
年龄分布 Age distribution |
性别 Gender |
|||||||
mRNA vaccine | mRNA-1273 | Moderna, National Institute of Allergy and Infectious Diseases (NIAID) | Pleurodynia, dyspnea, tachypnea, palpitations, syncope, painful breathing | High incidence in infants, adolescents and young adults | 76% male, 24% female | 76% occur-red after 2 doses of vaccine | 95% of patients recovered. Acute clinical course was mild with no fatal case | [2, 11, 23-28] |
BNT162b2 Comirnaty | Pfizer Phar-maceuticals Limited | Pleurodynia, dyspnea, palpitations, cMRI indicates myocarditis | High incidence in infants,adolescents and young adults | 76% male, 24% female | 76% occur-red after 2 doses of vaccine | Most patients recovered, but some of them died of fulminant myocarditis | [2, 6, 12, 28-33] | |
Adenovirus vector(non-replicating) vaccine | AZD1222, ChAdOx1 nCoV-19 | Astra Zeneca and Oxford University | Exertional tachycardia, dyspnea, palpitations, thrombosis | High incidence in elderly people over 60 years old | No significant difference between genders | No significant relationship with doses | Most recovered or stabilized | [2, 24, 28, 31, 34] |
Ad26, COV2.S | Johnson & Johnson | Fatigue, headache, palpitations, pleurodynia nausea, dizziness, thrombosis | No significant difference among different ages | More male patients than female patients | No significant relationship with doses | Most recovered within 1-2 d, and a few died | [2, 8, 14, 22, 24, 28, 35] | |
Gam-COVID-Vac (Sputnik V) rAd26 | Gamaleya Research Institute, Health Ministry of the Russian Federation | Pleurodynia, palpitations, ST-segment elevation on ECG, sinus, tachycardia | No significant difference among different ages | No significant difference between genders | No significant relationship with doses | All patients recovered, no death cases | [2, 9, 24, 36] | |
Corona COVID-19 inactivatedvaccine (vero cell) | CoronaVac | Sinovac (Beijing,China) | Pleurodynia, dyspnea, tachypnea, palpitations, syncope, painful breathing | No significant difference among different ages | No significant difference between genders | First dose: 0.08 cases per 100 000 doses [CI, 0.00 to 0.50];Second dose: 0.60 cases per 100 000 doses [CI, 0.24 to 1.37] | Most recovered, except one death case | [2, 13] |
Note: CI is a confidence interval. |
2 COVID-19疫苗相关性心肌炎可能的发生机制
通过分析COVID-19疫苗相关性心肌炎的发生概况,可知疫苗相关性心肌炎的发生与性别、疫苗接种剂次、疫苗类型甚至是制作工艺等因素之间都存在一定联系,因此,本文进一步归纳总结COVID-19疫苗相关性心肌炎可能的发生机制。
2.1 COVID-19疫苗相关性心肌炎与睾酮的关系最新数据表明,发生COVID-19疫苗相关性心肌炎的患者中男性占比约为79%,显著高于女性[5]。Patel等[16]研究推测,COVID-19疫苗相关性心肌炎发生人群的性别差异可能与睾酮水平有关。睾酮具有抑制抗炎细胞和加强Th1型免疫反应的作用[5, 29, 37]。较高水平的睾酮可促进雄性小鼠体内Th1CD4+细胞反应,加剧心肌组织炎性损伤[38]。由此,推测COVID-19疫苗相关性心肌炎患者以男性居多,可能与男性患者体内睾酮水平相对较高有关。
2.2 COVID-19疫苗相关性心肌炎与腺病毒载体的关系Ad26和AZD1222疫苗分别由重组人腺病毒载体(26型)和黑猩猩腺病毒载体组成,两者都编码SARS-CoV-2刺突蛋白[5]。在接种此类疫苗后,疫苗成分中的腺病毒载体可直接感染心包,使SARS-CoV-2刺突蛋白在心脏局部高表达,从而引发机体局部免疫反应过度并导致心肌炎性损伤,患者可出现心肌肌钙蛋白T(cTnT)水平升高[5, 30, 32]。这可能是以腺病毒为载体的COVID-19疫苗相关性心肌炎的发生机制之一。
2.3 COVID-19疫苗相关性心肌炎与mRNA疫苗免疫原性的关系mRNA疫苗在进入细胞前会暴露出RNA分子(外源物),使mRNA疫苗本身具有一定的免疫原性,且稳定性较差的mRNA疫苗更易暴露RNA从而增强免疫原性[5, 7]。RNA片段被树突状细胞或表达Toll样受体的细胞识别,从而激活机体先天性和特异性免疫反应,释放大量细胞因子,导致炎症的发生,这可能是mRNA疫苗导致心肌炎的机制之一[5]。
为减少mRNA疫苗因其免疫原性而导致的疫苗相关性心肌炎的发生,需提高疫苗的稳定性,降低其免疫原性,以减少其对机体免疫系统的刺激[7]。另外,同为mRNA疫苗,Moderna疫苗(mRNA-1273)的免疫原性远远弱于辉瑞疫苗(BNT162b2)[39]。Hajra等[8]指出辉瑞疫苗对储存温度的要求较高,疫苗需要保存在-80 ℃至-60 ℃之间;而Moderna疫苗的储存温度在-25 ℃至-15 ℃之间,这样的储存温度更容易维护与保持。而稳定适宜的温度能保持mRNA疫苗的稳定性,降低疫苗的免疫原性[39]。这也解释了为何同为mRNA疫苗,但是接种BNT162b2疫苗后心肌炎的发生率较mRNA-1273疫苗要高。
mRNA疫苗的制作工艺对其免疫原性也有一定影响。在制备mRNA疫苗过程中,可通过改变核苷修饰来降低疫苗的免疫原性。比如mRNA中的核苷可以被修饰为N1-甲基假尿苷而不是N1-甲基尿苷,这样可以显著降低其免疫原性[7]。此外,在mRNA疫苗成分中加入脂质纳米颗粒(LNPs)也有助于降低mRNA分子在生理条件下固有的免疫原性[7]。
2.4 COVID-19疫苗相关性心肌炎与递送载体引发超敏反应的关系临床上有部分COVID-19疫苗相关性心肌炎表现出超敏反应症状[33, 40-43],表现为心肌组织出现大量嗜酸性粒细胞浸润,并可能存在淋巴细胞、巨噬细胞、浆细胞和细胞碎片等[5, 44]。通过研究多例接种BNT162b2疫苗(mRNA疫苗)的组织样本可以发现,炎性细胞的浸润及浸润细胞的种类特征与超敏反应一致[5, 33]。这表明在此类病例中,疫苗相关性心肌炎的发生可能与超敏反应有关[35, 45]。脂质纳米颗粒是mRNA疫苗的递送载体,它可以稳定游离mRNA,帮助mRNA进入宿主细胞[5]。脂质纳米颗粒中最关键的成分是可变电离脂质(即mRNA-1273疫苗中的SM-102,BNT162b2疫苗中的ALC-0315),该成分可导致机体出现超敏反应。这可能是COVID-19疫苗相关性心肌炎发生的原因之一[26, 46]。
2.5 COVID-19疫苗相关性心肌炎与儿茶酚胺的关系Gill等[45]在对部分COVID-19疫苗接种后死亡的病例分析时发现,这些病例中出现肾上腺素含量异常增高的现象。肾上腺素属于儿茶酚胺类激素,其异常表达可诱导机体出现应激性心肌炎,表现为心外膜血管痉挛、微血管功能障碍、伴有心室流入道或流出道梗阻的高动力收缩[36]。儿茶酚胺作为氧自由基的潜在来源之一,可以干扰钠和钙转运;另外,人体内高水平的儿茶酚胺可通过环磷酸腺苷(AMP)增加跨心肌细胞膜钙离子内流和细胞钙超载,从而导致心肌细胞功能障碍,引发应激性心肌炎[36]。因此,儿茶酚胺诱导的应激性心肌炎也可能是COVID-19疫苗相关性心肌炎的发生机制之一。
3 展望疫苗相关性心肌炎是COVID-19疫苗接种后的不良反应之一,严重者可导致患者死亡,在接种人口基数巨大的情况下该不良反应不容忽视。本文在总结不同国家疫苗安全监测数据及相关病例报道后发现,COVID-19疫苗相关性心肌炎的发生与疫苗的类型、接种剂次以及接种人群特征等因素都存在一定的相关性。综合分析现有的机制可知,不同类型疫苗所引起心肌炎的机制各不相同。首先,由于睾酮可能在疫苗相关性心肌炎的发生中起一定作用,因此在大部分的报道病例中以男性病例居多[5]。其次,mRNA疫苗诱发心肌炎的机制与其免疫原性相关,因此在接种mRNA疫苗的人群中发生心肌炎的病例有明显的年龄倾向性,以青年居多,且与接种剂次明显相关;腺病毒载体疫苗诱发心肌炎与载体(腺病毒)本身易结合心脏组织有关,因此其诱发心肌炎的病例没有明显的年龄倾向,且和接种剂次也无明显关联;灭活疫苗诱发的心肌炎病例虽然与年龄无关,但是与接种剂次存在明显关联,提示其引起心肌炎或与机体的免疫反应有关。此外,通过多项对mRNA疫苗BNT162b2和mRNA-1273的比较研究可以看出,疫苗制备工艺与疫苗引发的不良反应之间存在很大的关联性,因此在后续的疫苗研发工作中,疫苗辅料的选择以及制备工艺的优化也是研发人员应重点关注的内容。目前对COVID-19疫苗相关性心肌炎的发生机制研究尚处于起步阶段,本文所提及的机制研究以相关性分析居多,直接实验证据略显不足,因此未来需结合临床数据开展更多的基础研究以明确疫苗相关性心肌炎发生的具体机制,为后续新型COVID-19疫苗的研发以及现有疫苗的优化,特别是在降低mRNA疫苗的免疫原性以及降低其副作用等方面提供新的启示。
[1] |
陈则. 关于新冠病毒疫苗研发的思考[J]. 生命科学研究, 2020, 24(4): 259-262. |
[2] |
冯基花, 张剑锋. 新型冠状病毒疫苗潜在不良反应的研究进展[J]. 广西科学, 2021, 28(2): 103-112. |
[3] |
SHIRAVI A A, ARDEKANI A, SHEIKHBAHAEI E, et al. Cardiovascular complications of SARS-CoV-2 vaccines: an overview[J]. Cardiology and Therapy, 2022, 11(1): 13-21. DOI:10.1007/s40119-021-00248-0 |
[4] |
HENDREN N S, CARTER S, GRODIN J L. Severe COVID-19 vaccine associated myocarditis: zebra or unicorn?[J]. International Journal of Cardiology, 2021, 343: 197-198. DOI:10.1016/j.ijcard.2021.09.036 |
[5] |
BOZKURT B, KAMAT I, HOTEZ P J. Myocarditis with COVID-19 mRNA vaccines[J]. Circulation, 2021, 144(6): 471-484. DOI:10.1161/CIRCULATIONAHA.121.056135 |
[6] |
MEVORACH D, ANIS E, CEDAR N, et al. Myocarditis after BNT162b2 mRNA vaccine against Covid-19 in Israel[J]. The New England Journal of Medicine, 2021, 385(23): 2140-2149. DOI:10.1056/NEJMoa2109730 |
[7] |
LAZAROS G, KLEIN A L, HATZIANTONIOU S, et al. The novel platform of mRNA COVID-19 vaccines and myocarditis: clues into the potential underlying mechanism[J]. Vaccine, 2021, 39(35): 4925-4927. DOI:10.1016/j.vaccine.2021.07.016 |
[8] |
HAJRA A, GUPTA M, GHOSH B, et al. Proposed pathogenesis, characteristics, and management of COVID-19 mRNA vaccine-related myopericarditis[J]. American Journal of Cardiovascular Drugs: Drugs, Devices, and Other Interventions, 2022, 22(1): 9-26. DOI:10.1007/s40256-021-00511-8 |
[9] |
SCHNEIDER J, SOTTMANN L, GREINACHER A, et al. Postmortem investigation of fatalities following vaccination with COVID-19 vaccines[J]. International Journal of Legal Medicine, 2021, 135(6): 2335-2345. DOI:10.1007/s00414-021-02706-9 |
[10] |
HABEDANK D, LAGAST A, NOVOA-USME M, et al. A case of myocarditis in a 60-year-old man 48 h after mRNA vaccination against SARS-CoV2[J]. Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 2022, 111(2): 230-232. DOI:10.1007/s00392-021-01946-4 |
[11] |
PEREZ Y, LEVY E R, JOSHI A Y, et al. Myocarditis following coronavirus disease 2019 mRNA vaccine: a case series and incidence rate determination[J]. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 2022, 75(1): e749-e754. DOI:10.1093/cid/ciab926 |
[12] |
WITBERG G, BARDA N, HOSS S, et al. Myocarditis after Covid-19 vaccination in a large health care organization[J]. The New England Journal of Medicine, 2021, 385(23): 2132-2139. DOI:10.1056/NEJMoa2110737 |
[13] |
MASSARI M, ALEGIANI S S, MORCIANO C, et al. Postmarketing active surveillance of myocarditis and pericarditis following vaccination with COVID-19 mRNA vaccines in persons aged 12 to 39 years in Italy: a multi-database, self-controlled case series study[J]. PLoS Medicine, 2022, 19(7): e1004056. DOI:10.1371/journal.pmed.1004056 |
[14] |
LAI F T T, LI X, PENG K, et al. Carditis after COVID-19 vaccination with a messenger RNA vaccine and an inactivated virus vaccine: a case-control study[J]. Annals of Internal Medicine, 2022, 175(3): 362-370. DOI:10.7326/M21-3700 |
[15] |
YAMAGUCHI T, IWAGAMI M, ISHIGURO C, et al. Safety monitoring of COVID-19 vaccines in Japan[J]. The Lancet Regional Health-Western Pacific, 2022, 23(1): 100442. |
[16] |
PATEL Y R, LOUIS D W, ATALAY M, et al. Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis following mRNA COVID-19 vaccination: a case series[J]. Journal of Cardiovascular Magnetic Resonance: Official Journal of the Society for Cardiovascular Magnetic Resonance, 2021, 23(1): 101. DOI:10.1186/s12968-021-00795-4 |
[17] |
FATIMA M, AHMAD CHEEMA H, AHMED KHAN M H, et al. Development of myocarditis and pericarditis after COVID-19 vaccination in adult population: a systematic review[J]. Annals of Medicine and Surgery, 2022, 76: 103486. |
[18] |
HASNIE A A, HASNIE U A, PATEL N, et al. Perimyocarditis following first dose of the mRNA-1273 SARS-CoV-2 (Moderna) vaccine in a healthy young male: a case report[J]. BMC Cardiovascular Disorders, 2021, 21(1): 375. DOI:10.1186/s12872-021-02183-3 |
[19] |
胡定坤, 于紫月. 辉瑞疫苗在不同国家有效性相差一倍[J]. 科学大观园, 2021(16): 4. DOI:10.3969/j.issn.1003-1871.2021.16.002 |
[20] |
MORGAN M C, ATRI L, HARRELL S, et al. COVID-19 vaccine-associated myocarditis[J]. World Journal of Cardiology, 2022, 14(7): 382-391. DOI:10.4330/wjc.v14.i7.382 |
[21] |
BELLOS I, KARAGEORGIOU V, VISKIN D. Myocarditis following mRNA Covid-19 vaccination: a pooled analysis[J]. Vaccine, 2022, 40(12): 1768-1774. DOI:10.1016/j.vaccine.2022.02.017 |
[22] |
SINGH A, KHILLAN R, MISHRA Y, et al. The safety profile of COVID-19 vaccinations in the United States[J]. American Journal of Infection Control, 2022, 50(1): 15-19. DOI:10.1016/j.ajic.2021.10.015 |
[23] |
RAHMAN M M, MASUM M H U, WAJED S, et al. A comprehensive review on COVID-19 vaccines: development, effectiveness, adverse effects, distribution and challenges[J]. Virusdisease, 2022, 33(1): 1-22. DOI:10.1007/s13337-022-00755-1 |
[24] |
ROSNER C M, GENOVESE L, TEHRANI B N, et al. Myocarditis temporally associated with COVID-19 vaccination[J]. Circulation, 2021, 144(6): 502-505. DOI:10.1161/CIRCULATIONAHA.121.055891 |
[25] |
PATONE M, MEI X W, HANDUNNETTHI L, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection[J]. Nature Medicine, 2022, 28(2): 410-422. DOI:10.1038/s41591-021-01630-0 |
[26] |
LI M, YUAN J, LV G, et al. Myocarditis and pericarditis following COVID-19 vaccination: inequalities in age and vaccine types[J]. Journal of Personalized Medicine, 2021, 11(11): 1106. DOI:10.3390/jpm11111106 |
[27] |
GARGANO J W, WALLACE M, HADLER S C, et al. Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: update from the advisory committee on immunization practices - United States, June 2021[J]. Morbidity and Mortality Weekly Report (MMWR), 2021, 70(27): 977-982. DOI:10.15585/mmwr.mm7027e2 |
[28] |
EGGEBRECHT H, BREITBART P, KOCH A, et al. Trends in ambulatory cardiology consultations for suspected myocarditis after COVID-19 vaccination[J]. Clinical Research in Cardiology: Official Journal of the German Cardiac Society, 2022, 111(2): 237-239. DOI:10.1007/s00392-021-01974-0 |
[29] |
HEYMANS S, COOPER L T. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms[J]. Nature Reviews Cardiology, 2022, 19(2): 75-77. DOI:10.1038/s41569-021-00662-w |
[30] |
SHAW K E, CAVALCANTE J L, HAN B K, et al. Possible association between COVID-19 vaccine and myocarditis: clinical and CMR findings[J]. JACC Cardiovascular Imaging, 2021, 14(9): 1856-1861. DOI:10.1016/j.jcmg.2021.06.002 |
[31] |
NAGASAKA T, KOITABASHI N, ISHIBASHI Y, et al. Acute myocarditis associated with COVID-19 vaccination: a case report[J]. Journal of Cardiology Cases, 2022, 25(5): 285-288. DOI:10.1016/j.jccase.2021.11.006 |
[32] |
LIM Y, KIM M C, KIM K H, et al. Case report: acute fulminant myocarditis and cardiogenic shock after messenger RNA coronavirus disease 2019 vaccination requiring extracorporeal cardiopulmonary resuscitation[J]. Frontiers in Cardiovascular Medicine, 2021, 8: 758996. DOI:10.3389/fcvm.2021.758996 |
[33] |
KOUNIS N G, KONIARI I, MPLANI V, et al. First identified case of fatal fulminant eosinophilic myocarditis following the initial dose of the Pfizer-BioNTech mRNA COVID-19 vaccine (BNT162b2, comirnaty): an extremely rare idiosyncratic necrotizing hypersensitivity reaction different to hypersensitivity or drug-induced myocarditis[J]. Journal of Clinical Immunology, 2022, 42(4): 736-737. DOI:10.1007/s10875-022-01228-2 |
[34] |
HASSANZADEH S, SADEGHI S, MIRDAMADI A, et al. Myocarditis following AstraZeneca (an adenovirus vector vaccine) COVID-19 vaccination: a case report[J]. Clinical Case Reports, 2022, 10(4): e05744. DOI:10.1002/ccr3.5744 |
[35] |
CHEN J H, IKWUANUSI I A, BOMMU V J L, et al. COVID-19 vaccine-related myocarditis: a descriptive study of 40 case reports[J]. Cureus, 2022, 14(1): e21740. |
[36] |
NAGHASHZADEH F, SHAFAGHI S, DORUDINIA A, et al. Myocarditis following rAd26 and rAd5 vector-based COVID-19 vaccine: case report[J]. ESC Heart Failure, 2022, 9(2): 1483-1486. DOI:10.1002/ehf2.13821 |
[37] |
GIRÓN-GONZÁLEZ J A, MORAL F J, ELVIRA J, et al. Consistent production of a higher TH1∶TH2 cytokine ratio by stimulated T cells in men compared with women[J]. European Journal of Endocrinology, 2000, 143(1): 31-36. |
[38] |
HUBER S A, PFAEFFLE B. Differential Th1 and Th2 cell responses in male and female BALB/c mice infected with coxsackievirus group B type 3[J]. Journal of Virology, 1994, 68(8): 5126-5132. DOI:10.1128/jvi.68.8.5126-5132.1994 |
[39] |
MEO S A, BUKHARI I A, AKRAM J, et al. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and moderna vaccines[J]. European Review for Medical and Pharmacological Sciences, 2021, 25(3): 1663-1669. |
[40] |
WU Q, DUDLEY M Z, CHEN X, et al. Evaluation of the safety profile of COVID-19 vaccines: a rapid review[J]. BMC Medicine, 2021, 19(1): 173. DOI:10.1186/s12916-021-02059-5 |
[41] |
BADEN L R, EL SAHLY H M, ESSINK B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine[J]. The New England Journal of Medicine, 2021, 384(5): 403-416. DOI:10.1056/NEJMoa2035389 |
[42] |
IGUCHI T, UMEDA H, KOJIMA M, et al. Cumulative adverse event reporting of anaphylaxis after mRNA COVID-19 vaccine (Pfizer-BioNTech) injections in Japan: the first-month report[J]. Drug Safety, 2021, 44(11): 1209-1214. DOI:10.1007/s40264-021-01104-9 |
[43] |
PILLAY J, GAUDET L, WINGERT A, et al. Incidence, risk factors, natural history, and hypothesised mechanisms of myocarditis and pericarditis following Covid-19 vaccination: living evidence syntheses and review[J]. The BMJ, 2022, 378: e069445. |
[44] |
BOURSIER C, CHEVALIER E, FILIPPETTI L, et al. 68Ga-DOTATOC digital-PET imaging of inflammatory cell infiltrates in myocarditis following COVID-19 vaccination[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49(4): 1433-1434. DOI:10.1007/s00259-021-05609-4 |
[45] |
GILL J R, TASHJIAN R, DUNCANSON E. Autopsy histopathologic cardiac findings in 2 adolescents following the second COVID-19 vaccine dose[J]. Archives of Pathology & Laboratory Medicine, 2022, 146(8): 925-929. |
[46] |
TSILINGIRIS D, VALLIANOU N G, KARAMPELA I, et al. Potential implications of lipid nanoparticles in the pathogenesis of myocarditis associated with the use of mRNA vaccines against SARS-CoV-2[J]. Metabolism Open, 2022, 13: 100159. DOI:10.1016/j.metop.2021.100159 |