食糖是食品工业的主要原材料,又是居民生活的消费必需品。我国是世界上第三大产糖国,仅次于巴西和印度,蔗糖占食糖总量的90%以上。甘蔗是蔗糖的主要原材料,广西是全国甘蔗种植大省,种植面积和产糖量均占全国的60%左右。然而,受适蔗土地资源及环境气候制约,与国际甘蔗种植相比,我国甘蔗生产集约化程度低,导致食糖成本高,平均每年进口蔗糖量占需求总量三分之一左右,且由于国际蔗糖到岸价格低廉,严重冲击国内市场,制约甘蔗制糖产业的发展。蔗糖产业作为战略储备物资在国民经济中占有重要地位,因此发展高附加值产品的绿色生产技术,提高甘蔗及其副产品的资源化利用水平具有重要意义。近年来,越来越多研究聚焦采用生物催化和微生物发酵技术转化蔗糖以及糖蜜,研制有机酸、新型低热量功能糖/糖苷、功能氨基酸等高附加值产品,提升产业优势,为甘蔗制糖产业新经济增长点开辟路径。
1 甘蔗基蔗糖精制及各组分利用甘蔗精制工业过程中,需要先将成熟的甘蔗物理加工提取蔗汁。甘蔗汁具有天然的营养、功能及风味成分,是制备风味糖浆的天然原料,而甘蔗糖浆已经用于鸡尾酒调制、食品加工等领域[1]。将蔗汁加热、沉淀、过滤,以除去非糖物质并降低蔗汁的黏度、色度,获得清汁,然后经过蒸发浓缩和熬煮就可以制成糖膏,同时伴有蔗糖晶体的形成。将晶粒和母液分离,晶粒经干燥可制得高纯度的精制红糖和白糖产品。此外,蔗糖精制过程中会产生大量糖蜜,糖蜜通常呈深褐色,黏度较高且流动性较差,含有大量蔗糖和少量葡萄糖、果糖。
甘蔗精制蔗糖除广泛应用于食品加工领域外,还可以作为原料转化生产高附加值产品。近年来,随着生物信息学、合成生物学、生物催化和微生物发酵等学科理论和关键技术的发展,已有众多报道利用蔗糖制备精细化学品、功能糖及其衍生物、天然产物等,在食品、医药、化工领域具有潜在的应用。所采用关键技术主要分为两大类:生物催化转化技术和微生物发酵技术。
2 甘蔗基蔗糖的生物催化转化技术生物催化技术即采用筛选获得的酶元件或者含有酶元件的细胞直接转化蔗糖合成目标产品,该方法具有操作简便、环境友好、转化效率高、产物易于分离等优点。自然界中广泛存在多种对蔗糖进行催化转化的酶元件,根据BRENDA数据库(https://www.brenda-enzymes.org/)记录信息,直接参与蔗糖转化相关的酶类有14种(表 1),已经被表征的酶催化元件不少于500种,这些关键元件的获取为蔗糖生物转化利用合成高附加值产品提供基础。
酶 Enzyme |
EC号 EC No. |
催化反应 Reaction |
来源 Source |
UNIPROT | 文献 Reference |
Levansucrase | 2.4.1.10 | Sucrose+ [fructofuranosyl]n glucopyranoside= glucose+ [fructofuranosyl]n+1 -glucopyranoside | Rahnella aquatilis | O54435 | [2] |
Sucrose synthase | 2.4.1.13 | Sucrose+UDP=UDP-glucose+fructose | Arabidopsis thali- ana | P49040 | [3] |
Sucrose-phosphate synthase | 2.4.1.14 | UDP-glucose+fructose 6-phosphate= UDP+sucrose 6-phosphate | Oryza sativa | A2WYE9 | [4] |
Alternansucrase | 2.4.1.140 | [glc-glc]n+2sucrose=[glc-glc]n+2+2fructofuranose | Leuconostoc mesenteroides | Q9RE05 | [5] |
Sucrose 6-phosphate phosphorylase | 2.4.1.329 | Sucrose 6-phosphate+phosphate=glucose1-phosphate+fructose 6-phosphate | Thermoanaerobacterium thermosac- charolyticum | D9TT09 | [6] |
Sucrose phosphorylase | 2.4.1.7 | Sucrose+phosphate=fructose+glucose 1-phosphate | Bifidobacterium adolescentis | Q84HQ2 | [7] |
Amylosucrase | 2.4.1.4 | Sucrose+[(1-4)-glucosyl]n=fructose+ [(1-4)-glucosyl]n+1 | Neisseria polysac- charea | Q9ZEU2 | [8] |
Dextransucrase | 2.4.1.5 | Sucrose+[(1-6)-glucosyl]n=fructose+ [(1-6)-glucosyl]n+1 | Neisseria polysac- charea | - | [9] |
Raffinose synthase | 2.4.1.82 | Sucrose+galactinol=raffinose+inositol | Arabidopsis thali- ana | Q9FND9 | [10] |
Inulosucrase | 2.4.1.9 | Sucrose+[fructosyl]n=glucose+[fructosyl]n+1 | Lactobacillus reuteri | Q8GP32 | [11] |
Sucrose:Sucrose fructosyltransferase | 2.4.1.99 | 2sucrose=glucose+ fructofuranosyl-fructofuranosyl-glucopyranoside | Festuca arundinacea | Q9FSV7 | [12] |
Loliose synthase | 2.4.1.B1 | UDP-galactose+sucrose= UDP+loliose | Lolium perenne | - | [13] |
Sucrose-phosphate phosphatase | 3.1.3.24 | Sucrose 6-phosphate +H2O= sucrose+phosphate | Zea mays | Q9FQ11 | [14] |
Isomaltulose synthase | 5.4.99.11 | Sucrose=isomaltulose synthase | Enterobacter sp. FMB-1 | B5ABD8 | [15] |
蔗糖是由一分子葡萄糖和一分子果糖组成,因此采用生物催化技术利用蔗糖原料制备高附加值产品主要围绕这两种组分展开。针对蔗糖分子中果糖组分,开发最为成熟的技术是利用果糖转移酶直接转化蔗糖制备低聚果糖[16]。低聚果糖已被证实具有超强双歧因子和水溶性膳食纤维的双生理学特性,是目前研究较多、应用范围较广的益生元之一,在乳制品、饮料、糖果、面包、果冻等食品加工领域应用广泛,全国平均每年产能超过万吨;通过筛选新型菊糖果糖转移酶,还可以获得双果糖酐[17]等新型低聚果糖组分。此外,将果糖基转移酶催化蔗糖分解产生的果糖基转移至乳糖还原末端,进而形成低聚乳果糖,是目前工业上制备低聚乳果糖的主要方法[18]。低聚乳果糖因其优良的加工特性和生理功能,被广泛应用于食品工业领域,可以部分替代蔗糖。
蔗糖分子中的葡萄糖组分可以转化为glucose 1-phosphate (G1P)和UDP-glucose (UDPG)两种糖激活态中间体。前体G1P经糖苷转移酶实现功能寡糖及其衍生物的生物合成,例如来源于Leuconostoc mesenteroides的蔗糖磷酸化酶催化蔗糖和甘油合成甘油葡萄糖苷[19],该化合物是非洲神奇沙漠植物“不死草”密罗木的主要活性成分,具有高耐热性、低吸湿性、高持水性、抗氧化性,可作为化妆品原料。蔗糖磷酸化酶还实现了葡萄糖基转移合成稀有寡糖曲二糖[20]、葡萄糖基阿洛酮糖[21]、葡萄糖基丙二醇[22]等产物;此外,蔗糖磷酸化酶还可以与葡聚糖磷酸化酶偶联制备合成淀粉,应用于制备可降解生物材料。蔗糖合成酶常用于天然产物的糖基化修饰,它可以催化蔗糖和UDP合成UDPG、果糖。Dai等[23]设计由蔗糖合成酶和糖基转移酶组成的双酶体系,实现新型人参皂苷Rh2和F12的生物制备,同时解决UDPG在天然产物糖基化修饰中的成本问题,具有潜在的应用前景。另外,蔗糖也可以作为全组分生物利用合成一些功能糖产物,最近研究发现淀粉蔗糖酶和蔗糖异构酶可催化蔗糖分子异构合成松二糖、海藻酮糖等产品,转化率为40%-90%[24]。
由于蔗糖具有多个羟基,其经脂肪酶催化可以与有机酸反应形成蔗糖酯[25-26],后者可充当抗菌剂、乳化剂使用并已应用于食品、纺织等行业中[27]。此外,也有学者报道使用蛋白酶催化蔗糖酯的合成,而且效率更高。例如使用来源于Bacillus licheniformis的protease可用于合成蔗糖丙烯酸酯,经24 h反应后可以转化90%的蔗糖[28];王治丹[29]使用蛋白酶N合成蔗糖甲基丙烯酸酯,后者可在海藻酸钠水溶液中形成凝胶,用作药物缓释剂参与溃疡的治疗。
上述生物转化系统大都采用单酶或者双酶围绕蔗糖开展高附加值利用研究,主要集中在糖苷转移、异构和酯化等几类反应,造成产品种类受限。随着生物信息学和合成生物学技术的发展,越来越多的酶催化元件和合成途径被精准解析,基于酶元件设计和构建复杂的体外合成途径,对实现原子经济性利用转化和获得结构多样性的产品具有重要意义。因此,相关研究组合氧化还原、异构、脱磷酸、核苷化以及糖苷转移等生化反应,构筑热力学驱动的多酶级联催化技术,转化蔗糖合成高附加值产物。例如,Zhong等[30]构建由嗜热物种来源的蔗糖磷酸化酶、葡萄糖磷酸变位酶、肌醇1-磷酸合成酶和肌醇单磷酸酶组成的四酶反应体系,基于纤维素结合蛋白构建蛋白复合体,解决反应体系中酶最适温度不匹配问题,实现蔗糖的高效转化合成肌醇,得率达到0.98 mol/mol。Tian等[31]基于核苷化、异构和转苷反应构建多酶催化体系,筛选来源于拟南芥(Arabidopisis thaliana)和大肠杆菌(Escherichia coli)的蔗糖合成酶、UDP-葡萄糖4-差向异构酶、肌醇半乳糖合成酶、棉子糖合成酶和水苏糖合成酶,构建多酶反应体系;为解决级联催化过程中酶稳定性差和催化效率不匹配问题,优化酶使用量和底物浓度,采用分步级联和循环转化方式,成功转化蔗糖合成肌醇半乳糖、棉子糖和水苏糖3种寡糖,其中棉子糖产量达到128 g/L,为大豆寡糖的制备提供一种新的合成路线,后期可通过酶分子改造提供关键酶的热稳定性和催化活性,从而提升工业化应用潜力。同时,多酶催化体系中还可以集成乙酰化、脱水、氨基化等生化反应,从而转化蔗糖制备更多种类的高附加值产品(表 2)。
酶 Enzyme |
产物 Products |
产量/转化率 Production/Yield |
文献 Reference |
果糖基转移酶 Fructosyl transferase |
低聚果糖 FOS |
57% | [16] |
果糖基转移酶 Fructosyl transferase |
低聚乳果糖 LOS |
224 g/L | [18] |
蔗糖磷酸化酶 Sucrose phosphorylase |
葡萄糖甘油 Glucosyl glycerol |
203 g/L | [19] |
蔗糖磷酸化酶 Sucrose phosphorylase |
曲二糖 Kojibiose |
104.45 g/L | [20] |
蔗糖磷酸化酶、塔格糖3-差向异构酶 Sucrose phosphorylase, tagatose 3-epimerase |
葡萄糖基阿洛酮糖 Glucosyl-alluloside |
— | [21] |
淀粉蔗糖酶 Amylosucrase |
松二糖 Turanose |
43.4% | [24] |
淀粉蔗糖酶 Amylosucrase |
海藻糖 Trehalose |
81% | [24] |
脂肪酶 Lipase |
肉桂酸蔗糖酯 Cinnamate sucrose ester |
- | [25] |
蛋白酶 Protease |
蔗糖丙烯酸酯 Sucrose acrylate esters |
90% | [28] |
蛋白酶 Proteinase N |
蔗糖甲基丙烯酸酯 Sucrose metharylate |
22.15% | [29] |
菊粉蔗糖酶、菊粉果糖转移酶 Inulosucrase, inulin fructotransferase |
双果糖酐 Difructose dianhydride |
115 g/L | [17] |
蔗糖合成酶、UDP-糖基转移酶 Sucrose synthase, UDP-glycosyltransferase |
F12 | 3.98 g/L | [23] |
蔗糖磷酸化酶、葡萄糖磷酸变位酶、肌醇1-磷酸合成酶、肌醇单磷酸磷酸酶 Sucrose phosphorylase, phosphoglucomutase, inositol 1-phosphate synthase, and inositol monophosphatase |
肌醇 Inositol |
89.2 g/L | [30] |
蔗糖合成酶、UDP-葡萄糖4-差向异构酶、肌醇半乳糖合成酶、棉子糖合成酶、水苏糖合成酶 Sucrose synthase, UDP-glucose 4-epimerase, galactinol synthase, raffinose synthase and stachyose synthase |
棉子糖 Raffinose |
128 g/L | [31] |
3 甘蔗基蔗糖的微生物发酵技术
许多天然微生物具有代谢蔗糖的途径。蔗糖转运方式主要分为两种,即磷酸烯醇式丙酮酸-糖磷酸转移酶式(PEP-PTS)和非磷酸转移酶式(非PTS)[32-33]。在PEP-PTS体系中,磷酸烯醇丙酮酸作为磷酸盐供体可以将蔗糖磷酸化并摄入细胞中,所得的蔗糖6-磷酸将被水解为葡萄糖-6-磷酸和果糖;在非PTS体系中,蔗糖由蔗糖透过酶泵入胞内,随后被蔗糖水解酶分解成葡萄糖和果糖,或者被磷酸化酶水解成葡萄糖-1-磷酸和果糖。相比之下,非PTS体系所需的组件更少,也比PEP-PTS更简单。自然界中,并不是所有的微生物都能高效地摄入蔗糖,有的菌株甚至完全不能利用蔗糖,这是因为有的菌株没有蔗糖转运酶,蔗糖无法进入胞内。相关研究报道通过在工业菌株中引入蔗糖转运蛋白,利用蔗糖合成聚羟基脂肪酸酯(PHA)[34]。
蔗糖在微生物体内转化为细胞生长所需的能量ATP和中间代谢产物,或者转化为次级代谢产物。近年来,随着生物工程技术的不断发展,学者们对宿主细胞的合成代谢途径进行重构,引入各种蔗糖外源高效转化和利用的元件,成功创建一系列细胞工厂,可以高效地将蔗糖转化为多种精细物质(表 3)。
菌株 Strains |
产物 Products |
产量 Production(g/L) |
文献 Reference |
E.coli W | Polyhydroxyalkanoate, PHA | 113 | [34] |
E.coli | 葡糖二酸 d-glucaric acid |
1.42 | [35] |
Clostridium tyrobutyricum | 丁醇 n-Butanol |
16 | [36] |
Klebsiella sp. | 丁二醇 2, 3-butanediol |
119.4 | [37] |
Corynebacterium glutamicum | 赖氨酸 Lysine |
2.66 | [38] |
Lactobacillus sakei | γ-氨基丁酸 γ-aminobutyric acid |
68.1 | [39] |
Corynebacterium glutamicum | 阿洛酮糖 Allulose |
225 | [40] |
E.coli | 甘露醇 Mannitol |
45.2 | [41] |
Aureobasidium pullulans | 低聚果糖FOS | - | [42] |
Corynebacterium glutamicum | 甘油葡萄糖 α-glucosylglycerol, α-GG |
2.0 | [43] |
Bacillus amyloliquefaciens | 果聚糖 Levan |
104 | [46] |
Agrobacterium sp. | 凝胶多糖 Curdlan |
60 | [47] |
Xanthomonas campestris ATCC13951 | 黄原胶 Xanthan gum |
25 | [48] |
Actinobacillus succinogenes | 丁二酸 Succinic acid |
55.2 | [52] |
Lactobacillus delbrueckii | 乳酸 Lactic acid |
166 | [54] |
Bacillus cereus SPV | Poly (3-hydroxybutyrate), PHB | 4.0 | [55] |
Clostridium tyrobutyricum | 丁酸 Butyric acid |
55.2 | [56] |
Aspergillus niger GCMC-7 | 柠檬酸 Citric acid |
106.7 | [57] |
Zymomonas mobilis | 山梨醇 Sorbitol |
13.9 | [58] |
Acetobacter xylinum IFO 13772 | 纤维素 Bacterial cellulose |
12.0 | [60] |
3.1 化学品
近年来相关研究报道采用蔗糖作为原料,通过菌株改造,发酵法合成葡萄糖二酸[35]、丁醇[36]等化学品,尤其是Xin等[37]以克雷伯氏菌为出发菌株,尝试用葡萄糖、甘油、木糖和蔗糖4种廉价碳源合成2, 3-丁二醇,研究发现采用蔗糖发酵时,2, 3-丁二醇产量最高达到119.4 g/L,产率为2.18 g·L-1·h-1。
3.2 氨基酸及其衍生物当前已有研究报道采用经代谢工程改造的谷氨酸棒杆菌Corynebacterium glutamicum发酵蔗糖合成赖氨酸和谷氨酸。例如Kiefer等[38]比较葡萄糖、果糖和蔗糖发酵对赖氨酸合成的影响,采用葡萄糖发酵的赖氨酸产物得率(C-mol/C-mol)比蔗糖高8%,但是在菌株中增强果糖1, 6-二磷酸酶的表达强度后,蔗糖发酵获得赖氨酸和谷氨酸的得率提高近3倍,证实果糖1, 6-二磷酸酶在蔗糖发酵生产赖氨酸和谷氨酸中起到关键作用。除此之外,研究发现未经遗传操作的干酪乳杆菌Lactobacillus sakei发酵含有蔗糖的米糠抽提液培养基,可将12%的谷氨酸全部转化为γ-氨基丁酸,产量达到68.1 g/L,转化率达到100%,并实现5 000 L的转化反应,具有较强的应用潜力[39]。
3.3 功能单糖及糖醇蔗糖经蔗糖酶水解之后生成葡萄糖和果糖,后者可经全细胞催化转化合成功能单糖及糖醇。Yang等[40]设计基于蔗糖酶和阿洛酮糖3-差向异构酶的转化路线,筛选来源于嗜热菌株Thermotoga maritima的蔗糖酶和类芽孢菌属Paenibacillus senegalensis的阿洛酮糖3-差向异构酶,构建食品级表达体系,采用全细胞固定化方法,分级转化实现蔗糖转化合成阿洛酮糖,生产效率达到18.6 g·L-1·h-1。除此之外,蔗糖酶水解蔗糖为葡萄糖和果糖后,甘露醇脱氢酶可催化果糖转化为甘露醇。相关研究采用来源于植物乳杆菌Lactobacillus plantarum的蔗糖酶和布氏乳杆菌Lactobacillus buchneri的甘露醇脱氢酶,构建双酶共表达菌株,优化发酵条件,甘露醇产量达到45.19 g/L,转化率为37.66%,与乳酸菌直接发酵蔗糖生产甘露醇相比,产量提高6倍[41]。
3.4 功能寡糖蔗糖还可用于发酵合成功能寡糖及其衍生物。Yun等[42]将Aureobasidium pullulans细胞固定化,采用半连续发酵的方法将蔗糖转化为低聚果糖,并且经过循环使用60次后仍不影响转化效果;Roenneke等[43]通过对谷氨酸棒杆菌的代谢通路重构,转化蔗糖合成甘油葡萄糖苷,通过优化供体、氮源限制等因素,将甘油葡萄糖(α-GG)的产量提升至2 g/L。
3.5 多糖研究发现芽孢杆菌[44-45]可以发酵蔗糖合成Levan果聚糖,Levan果聚糖具有抗肿瘤、免疫调控、抗感染等作用,还可以作为血浆的替代品。张丽姣等[46]筛选获得一株解淀粉芽孢杆菌PB6,可发酵蔗糖合成胞外多糖,通过单因素和响应面实验优化发酵条件,果聚糖产量达到104 g/L;随后研究者对所获得果聚糖进行乙酰化、磺酰化和硫酸化修饰,发现经化学修饰后,产物的抗氧化性和抗肿瘤活性与未经修饰的果聚糖相比显著提高。除果聚糖,土壤农杆菌属Agrobacterium还可以发酵蔗糖合成凝胶多糖,产量达到60 g/L,已经被美国FDA于1996年准许将其作为食品稳定剂、增稠剂用于食品配料中[47]。Letisse等[48]使用Xanthomonas campestris ATCC13951以蔗糖为唯一碳源进行发酵产黄原胶,转化率可达60%。黄原胶主要由D-葡萄糖、D-甘露糖和D-葡萄糖醛酸构成,由于具有很强的亲水性和保湿性,已被广泛应用于医药、食品等领域。
4 甘蔗糖蜜的高附加值利用甘蔗糖蜜又叫桔水。作为一种甘蔗精制工业副产物,由于其含有大量糖类,常常直接用作饲料使用[49];与此同时,糖蜜还可以用作发酵培养基或辅料,目前报道最为广泛的是酿酒酵母发酵糖蜜生产生物乙醇[50-51]。除此之外,微生物法发酵糖蜜还用于合成其他大宗化学品(表 3),有效降低原料成本。例如Liu等[52]使用Actinobacillus succinogenes厌氧发酵糖蜜生产丁二酸,发酵60 h,产量达到50.6 g/L;后经发酵优化,丁二酸的产量和产率进一步提高,最终产量为55.2 g/L;Chen等[53]采用工程E.coli KJ122发酵也达到类似的产量。野生型Lactobacillus delbrueckii经紫外诱变后,具有较强的蔗糖糖蜜耐受性和乳酸生产能力,且乳酸的产量与糖蜜的添加量密切相关,当糖蜜添加到190 g/L时,乳酸的产量达到166 g/L[54]。聚羟基丁酸(PHB)是一类可降解生物材料,在工业上具有广泛应用前景,然而目前发酵生产PHB原料成本占据总成本50%。Akaraonye等[55]采用Bacillus cereus SPV发酵蔗糖糖蜜生产PHB,产量为4.0 g/L,占细胞干重的60%以上。此外,也有利用糖蜜生成丁酸[56]、柠檬酸[57]的报道。
除发酵糖蜜生产大宗化学品,也有相关研究报道利用糖蜜制备功能性碳水化合物。Yang等[40]成功利用蔗糖糖蜜合成阿洛酮糖,产量达到61.2 g/L。Cazetta等[58]以糖蜜为底物,利用菌株Zymomonas mobilis发酵合成山梨醇,在35℃、常压下可合成得到13.9 g/L产物。该法使用的底物成本更低,因而优势更加明显。此外,Keshk等[59]尝试利用微生物发酵糖蜜生产细菌纤维素,通过对发酵菌株筛选,得到一株最优产纤维素菌株Acetobacter xylinum IFO 13772,在培养基中发酵7 d,可以获得173.7 mg/L纤维素。另外,陈军等[60]采用硫酸-热处理糖蜜,更适合于纤维素的合成,使用红茶菌发酵可以制备12.0 g/L细菌纤维素。
5 展望尽管甘蔗基蔗糖生物转化利用合成高附加值产品取得显著成绩,但是依然有若干方向亟待突破。首先,当前生物催化技术大都只利用蔗糖中的葡萄糖或者果糖组分,造成碳原子浪费,今后研究中可组合两种或者多种酶催化技术,实现蔗糖的全组分利用,提高碳原子经济性;其次,当前使用糖蜜发酵会大幅度降低生产成本,但是由于其成分复杂,与蔗糖发酵相比产物产量通常较低,且前期需要复杂的处理工艺,成本高,后续研究中可筛选一些耐高盐、耐高渗、环境适应能力强的酶催化元件或者微生物,直接发酵糖蜜制备目标产品;再次,尽管蔗糖生物转化利用获得多种附加值产品,但是其市场潜能尚未完全开发,后期研究中可探索和宣传已开发产品的生理功能,提升市场认可,促进蔗糖产业升级。
[1] |
GILMORE L T.Process for preparing a caramel butterscotch flavor syrup: U.S.Patent 4, 753, 814[P].1988-6-28.
|
[2] |
SONG K B, SEO J W, KIM M G, et al. Levansucrase of Rahnella aquatilis ATCC33071.Gene cloning, expression, and levan formation[J]. Annals of the New York Academy of Sciences, 1998, 864(1): 506-511. |
[3] |
ABID G, SILUE S, MUHOVSKI Y, et al. Role of myo-inositol phosphate synthase and sucrose synthase genes in plant seed developmentt[J]. Gene, 2009, 439(1/2): 1-10. |
[4] |
JIANG L, YANG L, ZHANG H, et al. International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice[J]. Journal of Agricultural and Food Chemistry, 2009, 57(9): 3525-3532. |
[5] |
COTE G L, SHENG S, DUNLAP C A. Alternansucrase acceptor products[J]. Biocatalysis and Biotransformation, 2008, 26(1/2): 161-168. |
[6] |
VERHAEGHE T, AERTS D, DIRICKS M, et al. The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity[J]. Applied Microbiology and Biotechnology, 2014, 98(16): 7027-7037. |
[7] |
SPROGOE D, BROEK L A M, MIRZA O, et al. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis[J]. Biochemistry, 2004, 43(5): 1156-1162. |
[8] |
ALBENNE C, MONTALK G P, MONSAN P, et al. Site-directed mutagenesis of key amino acids in the active site of amylosucrase from Neisseria polysaccharea[J]. Biologia Bratislava, 2002, 57(S1): 119-128. |
[9] |
GUÉRIN F, BARBE S, PIZZUT-SERIN S, et al. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis[J]. The Journal of Biological Chemistry, 2012, 287(9): 6642-6654. |
[10] |
NISHIZAWA A, YABUTA Y, SHIGEOKA S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage[J]. Plant Physiology, 2008, 147(3): 1251-1263. |
[11] |
OZIMEK L K, EUVERINK G J W, MAAREL M, et al. Mutational analysis of the role of calcium ions in the Lactobacillus reuteri strain 121 fructosyltransferase (levansucrase and inulosucrase) enzymes[J]. FEBS Letters, 2005, 579(5): 1124-1128. |
[12] |
ALTENBACH D, NVESCH E, RITSEMA T, et al. Mutational analysis of the active center of plant fructosyltransferases:Festuca 1-SST and barley 6-SFT[J]. FEBS Letters, 2005, 579(21): 4647-4653. |
[13] |
AMIARD V, MORVAN-BERTRAND A, BILLARD J P, et al. Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in Perennial ryegrass[J]. Plant Physiology, 2003, 132(4): 2218-2229. |
[14] |
LUNNJ E, ASHTON A R, HATCH M D, et al. Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants[J]. Proceedings of the National Academy of Sciences, 2000, 97(23): 12914-12919. |
[15] |
CHA J, JUNG J H, PARK S E, et al. Molecular cloning and functional characterization of a sucrose isomerase (isomaltulose synthase) gene from Enterobacter sp.FMB-1[J]. Journal of Applied Microbiology, 2009, 107(4): 1119-1130. |
[16] |
SANGEETHA P T, RAMESH M N, PRAPULLA S G. Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77[J]. Process Biochemistry, 2004, 39(6): 755-760. |
[17] |
YU S, ZHU Y, ZHANG T, et al. Facile enzymatic production of difructose dianhydride Ⅲ from sucrose[J]. RSC Advance, 2016, 6(105): 103791-103794. |
[18] |
LI W, YU S, ZHANG T, et al. Efficient biosynthesis of lactosucrose from sucrose and lactose by the purified recombinant levansucrase from Leuconostoc mesenteroides B-512 FMC[J]. Journal of Agricultural and Food Chemistry, 2015, 63(44): 9755-9763. |
[19] |
BOLIVAR J M, LULEY GOEDL C, LEITNER E, et al. Production of glucosyl glycerol by immobilized sucrose phosphorylase:Options for enzyme fixation on a solid support and application in microscale flow format[J]. Journal of Biotechnology, 2017, 257: 131-138. |
[20] |
WANG M, WU J, WU D. Cloning and expression of the sucrose phosphorylase gene in Bacillus subtilis and synthesis of kojibiose using the recombinant enzyme[J]. Microbial Cell Factories, 2018, 17(1): 23. |
[21] |
MORIMOTO K, YOSHIHARA A, FURUMOTO T, et al. Production and application of a rare disaccharide using sucrose phosphorylase from Leuconostoc mesenteroides[J]. Journal of Bioscience and Bioengineering, 2015, 119(6): 652-656. |
[22] |
RENIRIE R, PUKIN A, LAGEN B V, et al. Regio- and stereoselective glucosylation of diols by sucrose phosphorylase using sucrose or glucose 1-phosphate as glucosyl donor[J]. Journal of Molecular Catalysis B:Enzymatic, 2010, 67(3/4): 219-224. |
[23] |
DAI L, LIU C, LI J, et al. One-pot synthesis of ginsenoside Rh2 and bioactive unnatural ginsenoside by coupling promiscuous glycosyltransferase from Bacillus subtilis 168 to sucrose synthase[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11): 2830-2837. |
[24] |
TIAN Y, DENG Y, ZHANG W, et al. Sucrose isomers as alternative sweeteners:Properties, production, and applications[J]. Applied Microbiology and Biotechnology, 2019, 103: 8677-8687. |
[25] |
何世军, 赵光磊, 何北海. 肉桂酸蔗糖酯的酶法制备及其抗菌活性[J]. 现代食品科技, 2018, 34(9): 129-135. |
[26] |
杜理华, 沈乐, 蒋志鹏. 一种脂肪酶催化合成蔗糖酯反应的工艺优化[J]. 浙江工业大学学报, 2017, 45(3): 285-288. |
[27] |
郑立夫, 叶妍悦. 蔗糖脂肪酸酯在食品加工中的应用研究[J]. 浙江化工, 2019, 50(8): 14-15, 27. |
[28] |
PARK H G, CHANG H N. Enzymatic regioselective synthesis of sucrose acrylate esters[J]. Biotechnology Letters, 2000, 22(1): 39-42. |
[29] |
王治丹.非水相蛋白酶合成蔗糖基聚合物[D].南宁: 广西大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10593-2008135413.htm
|
[30] |
ZHONG C, YOU C, WEI P, et al. Thermal cycling cascade biocatalysis of myo-inositol synthesis fromsucrose[J]. ACS Catalysis, 2017, 7(9): 5992-5999. |
[31] |
TIAN C, YANG J, ZENG Y, et al. Biosynthesis of raffinose and stachyose from sucrose via an in vitromultienzyme system[J]. Applied and Environmental Microbiology, 2019, 85(2): e02306-18. |
[32] |
KIM J R, KIM S H, LEE S Y, et al. Construction of homologous and heterologous synthetic sucrose utilizing modules and their application for carotenoid production in recombinant Escherichia coli[J]. Bioresource Technology, 2013, 130: 288-295. |
[33] |
REID S J, ABRATT V R. Sucrose utilisation in bacteria:Genetic organisation and regulation[J]. Applied Microbiology and Biotechnology, 2005, 67(3): 312-321. |
[34] |
ARIKAWA H, MATSUMOTO K, FUJIKI T. Poly-hydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W[J]. Applied Microbiology and Biotechnology, 2017, 101(20): 7497-7507. |
[35] |
QU Y N, YAN H J, GUO Q, et al. Biosynthesis of d-glucaric acid from sucrose with routed carbon distribution in metabolically engineered Escherichia coli[J]. Metabolic Engineering, 2018, 47: 393-400. |
[36] |
ZHANG J, YU L, LIN M, et al. n-Butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2[J]. Bioresource Technology, 2017, 233: 51-57. |
[37] |
XIN F, BASU A, WENG M C, et al. Production of 2, 3-butanediol from sucrose by a Klebsiella species[J]. BioEnergy Research, 2016, 9(1): 15-22. |
[38] |
KIEFER P, HEINZLE E, WITTMANN C. Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 28(6): 338-343. |
[39] |
KOOK M C, SEO M J, CHEIGH C I, et al. Enhanced production of gamma-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16[J]. Journal of Microbiology and Biotechnology, 2010, 20(4): 763-766. |
[40] |
YANG J, TIAN C, ZHANG T, et al. Development of food-grade expression system for d-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to d-allulose[J]. Biotechnology and Bioengineering, 2019, 116(4): 745-756. |
[41] |
陈艳, 田康明, 李玉, 等. 以蔗糖为底物利用重组大肠杆菌合成甘露醇[J]. 微生物学通报, 2014, 41(11): 2182-2189. |
[42] |
YUN J W, JUNG K H, OH J W, et al. Semibatch production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans[J]. Applied Biochemistry and Biotechnology, 1990, 24(1): 299-308. |
[43] |
ROENNEKE B, ROSENFELDT N, DERYA S M, et al. Production of the compatible solute α-d-glucosylglycerol by metabolically engineered Corynebacterium glutamicum[J]. Microbial Cell Factories, 2018, 17(1): 94. |
[44] |
HAN Y W, WATSON M A. Production of microbial levan from sucrose, sugarcane juice and beet molasses[J]. Journal of Industrial Microbiology & Biotechnology, 1992, 9(3/4): 257-260. |
[45] |
陆娟, 肖敏, 卢丽丽. 地衣芽孢杆菌产Levan果聚糖发酵条件的优化[J]. 食品科学, 2011, 32(7): 183-187. |
[46] |
张丽姣, 曾艳, 张颖, 等. 解淀粉芽孢杆菌胞外多糖发酵条件的优化[J]. 食品工业科技, 2015, 36(9): 214-219. |
[47] |
LEE I Y, SEO W T, KIM G J, et al. Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species[J]. Journal of Industrial Microbiology and Biotechnology, 1997, 18(4): 255-259. |
[48] |
LETISSE F, CHEVALLEREAU P, SIMON J L, et al. Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources[J]. Applied and Microbiology and Biotechnology, 2001, 55(4): 417-422. |
[49] |
沈大春, 敖俊华, 吴启华, 等. 甘蔗糖厂糖蜜及酒精废液应用现状与展望[J]. 甘蔗糖业, 2019(3): 46-51. |
[50] |
KHOJA A H, ALI E, ZAFAR K, et al. Comparative study of bioethanol production from sugarcane molasses by using Zymomonas mobilis and Saccharomyces cerevisiae[J]. African Journal of Biotechnology, 2015, 14(31): 2455-2462. |
[51] |
CARVALHO J C M, VITOLO M, SATO S, et al. Ethanol production by Saccharomyces cerevisiae grown in sugarcane blackstrap molasses through a fed-batch process[J]. Applied Biochemistry and Biotechnology, 2003, 110(3): 151-164. |
[52] |
LIU Y P, ZHENG P, SUN Z H, et al. Economical succinic acid production from cane molasses by Actinobacillus succinogenes[J]. Bioresource Technology, 2008, 99(6): 1736-1742. |
[53] |
CHAN S, KANCHANATAWEE S, JANTAMA K. Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli[J]. Bioresource Technology, 2012, 103(1): 329-336. |
[54] |
DUMBREPATIL A, ADSUL M, CHAUDHARI S, et al. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp.delbrueckii mutant Uc-3 in batch fermentation[J]. Applied and Environmental Microbiology, 2008, 74(1): 333-335. |
[55] |
AKARAONYE E, MORENO C, KNOWLES J C, et al. Poly (3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source[J]. Biotechnology Journal, 2012, 7(2): 293-303. |
[56] |
JIANG L, WANG J, LIANG S, et al. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses[J]. Bioresource Technology, 2009, 100(13): 3403-3409. |
[57] |
HAQ I U, ALI S, QADEER M A, et al. Citric acid fermentation by mutant strain of Aspergillus niger GCMC-7 using molasses based medium[J]. Electronic Journal of Biotechnology, 2002, 5(2): 8-9. |
[58] |
CAZETTA M L, CELLIGOI M A P C, BUZATO J B, et al. Optimization study for sorbitol production by Zymomonas mobilis in sugarcane molassess[J]. Process Biochemistry, 2005, 40(2): 747-751. |
[59] |
KESHK S, SAMESHIMA K. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose[J]. Applied Microbiology and Biotechnology, 2006, 72(2): 291-296. |
[60] |
陈军, 杨雪霞, 陈琳, 等. 利用糖蜜制备细菌纤维素的研究[J]. 纤维素科学与技术, 2013, 21(2): 15-21. |