引用本文
  • 宋吉超,黄伟,陈振棠,周成才.基于改进YOLOV7与StrongSORT算法的列车司机手比行为检测[J].广西科学院学报,2023,39(4):471-478.    [点击复制]
  • SONG Jichao,HUANG Wei,CHEN Zhentang,ZHOU Chengcai.Gesture Behavior Detection of Train Drivers Based on Improved YOLOV7 and StrongSORT[J].Journal of Guangxi Academy of Sciences,2023,39(4):471-478.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 174次   下载 373 本文二维码信息
码上扫一扫!
基于改进YOLOV7与StrongSORT算法的列车司机手比行为检测
宋吉超, 黄伟, 陈振棠, 周成才
0
(柳州铁道职业技术学院动力技术学院, 广西柳州 545000)
摘要:
列车司机驾驶行为的规范性直接影响到列车行车安全与状态,但当前对列车司机手比行为的检测仍存在不足。为了对列车司机手比行为进行有效检测,本文利用动车组模拟驾驶系统所采集的司机乘务作业影像,结合采用融合注意力机制的You Only Look Once Version 7 (YOLOV7)神经网络模型与Strong Simple Online and Realtime Tracking (StrongSORT)算法,对动车组司机驾驶过程中的5种手比行为进行检测。实验结果表明:本文算法可以有效提升对列车司机乘务作业时不同类型手比行为的检测效果,其中检测精确率平均提升1.2%,检测召回率平均提升1.9%。本文提出的算法将有助于改进铁路院校、机务部门对列车司机日常训练、工作考评的效果,提高列车行车过程中的安全性。
关键词:  列车司机  乘务作业  行为检测  YOLOV7  StrongSORT  注意力机制
DOI:10.13657/j.cnki.gxkxyxb.20231226.014
投稿时间:2022-09-04修订日期:2023-02-09
基金项目:柳州铁道职业技术学院2022年度校级立项项目“基于人工智能技术的列车司机行为监测系统”(2022-KJB14)资助。
Gesture Behavior Detection of Train Drivers Based on Improved YOLOV7 and StrongSORT
SONG Jichao, HUANG Wei, CHEN Zhentang, ZHOU Chengcai
(Power Technology Institute, Liuzhou Railway Vocational Technical College, Liuzhou, Guangxi, 545000, China)
Abstract:
The standardization of train driver's driving behavior directly affects the running safety and state of train operation.At present,the detection of train driver's gesture behavior is insufficient.In order to effectively detect the gesture behavior of train drivers,this article uses the images of drivers' crew work collected by the EMU simulation driving system,combined with the You Only Look Once Version 7 (YOLOV7) neural network model using the fusion attention mechanism and the Strong Simple Online and Realtime Tracking (StrongSORT) algorithm,five kinds of gesture behaviors of EMU drivers during driving were tested.The experimental results show that the algorithm in this article can effectively improve the detection effect of different types of gesture behaviors when the train driver is working.The detection accuracy rate is increased by 1.2% on average,and the detection recall rate is increased by 1.9% on average.The algorithm proposed in this article will help to improve the effect of daily training and work evaluation of train drivers by railway colleges and locomotive departments,and improve the safety in the process of train operation.
Key words:  train drivers  crew work  behavior detection  YOLOV7  StrongSORT  attention mechanism

用微信扫一扫

用微信扫一扫