引用本文: |
-
刘星毅,韦小铃.基于欧式距离的最近邻改进算法[J].广西科学院学报,2010,26(4):409-411. [点击复制]
- LIU Xing-yi,WEI Xiao-ling.Improved kNN Algorithm Based on Euclidean Distance[J].Journal of Guangxi Academy of Sciences,2010,26(4):409-411. [点击复制]
|
|
|
|
本文已被:浏览 499次 下载 480次 |
 码上扫一扫! |
基于欧式距离的最近邻改进算法 |
刘星毅, 韦小铃
|
|
(钦州学院, 广西钦州 535000) |
|
摘要: |
依托欧拉距离,使用杂合距离算法改进Minkowski距离公式,使得最近邻算法能够针对不同实际需要计算两事例距离,适用到属性是混合型的情形,也能避免时序列中出现的错误计算问题。 |
关键词: 邻算法 欧式距离 Minkowski 距离 |
DOI: |
投稿时间:2010-09-16修订日期:2010-10-11 |
基金项目:广西自然科学基金项目(桂科自0899018),广西教育厅科研项目(200808MS062)资助。 |
|
Improved kNN Algorithm Based on Euclidean Distance |
LIU Xing-yi, WEI Xiao-ling
|
(Qinzhou University, Qinzhou, Guangxi, 535000, China) |
Abstract: |
Based on Euclidean distance,a hybrid method was employed by making k Nearest Neighbor (kNN) algorithm available to calculate the distance between two instances. The proposed method can be applied for the case with all kinds of data and avoid the mistake computation in the time series data. |
Key words: nearest neighbor algorithm Euclidean distance Minkowski distance |
|
|