引用本文
  • 王萌,王晓荣,李春贵,唐培和.基于局部与全局信息的自动文摘算法[J].广西科学院学报,2007,23(4):226-228.    [点击复制]
  • WANG Meng,WANG Xiao-rong,LI Chun-gui,TANG Pei-he.Research of Automatic Summarization Based on Local and Global Information of Sentences[J].Journal of Guangxi Academy of Sciences,2007,23(4):226-228.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 518次   下载 439 本文二维码信息
码上扫一扫!
基于局部与全局信息的自动文摘算法
王萌, 王晓荣, 李春贵, 唐培和
0
(广西工学院计算机工程系, 广西柳州 545006)
摘要:
采用平均特征词频率策略计算特征词权重,用快速n-grims算法对各特征词所处的概念体进行加权,用一种改进的K-means聚类算法进行段落聚类,提出一种基于局部与全局信息的自动文摘算法并给出算法评估。该算法不仅能够自适应获得k值,而且有效防止了初始点的随机选择对聚类结果的影响。评测结果表明该算法对经济类和科技类文章的准确率和召回率都明显高于新闻类和文学类文章,利用机器文摘进行分类的准确率明显高于使用原文本进行分类。该算法所得到的文摘,在各项指标上都优于传统方法生成的文摘。
关键词:  K-means  n-grims  段落聚类  自然语言理解
DOI:
投稿时间:2007-09-10
基金项目:国家自然基金项目(60673034);2006年广西教育厅基金项目(149);广西工学院博士、硕士基金项目资助
Research of Automatic Summarization Based on Local and Global Information of Sentences
WANG Meng, WANG Xiao-rong, LI Chun-gui, TANG Pei-he
(Department of Computer Engineering, Guangxi University of Technology, Liuzhou, Guangxi, 545006, China)
Abstract:
The idea of our approach is to exploit both the local and global properties of sentences.In order to obtain local property,we use a term weighting scheme that employs average term frequency in a document as the normalization factor.And a fast algorithm for matching N-grams is uesd to optimize term weighting.The method can obtain an improved K-means method to cluster paragraphs,and discovers thematic areas according to clustering results.Furthermore,it integrates local and global property to produce summarization.And experiments do prove that it is feasible to use the method to develop a domain automatic abstracting system,which is valuable for further study.
Key words:  K-means  n-grims  paragraph clustering  natural language understanding

用微信扫一扫

用微信扫一扫