引用本文: |
-
庞寿全,陈乐,陈洁,周善东.三维分形生长的计算机模拟及其维数[J].广西科学院学报,2007,23(2):73-75,79. [点击复制]
- PANG Shou-quan,CHEN Le,CHEN Jie,ZHOU Shan-dong.Computer Simulation for Three-dimension Fractal Growth and Its Dimension[J].Journal of Guangxi Academy of Sciences,2007,23(2):73-75,79. [点击复制]
|
|
摘要: |
按照三维DLA模型的规则,分别在最近邻和次近邻的条件下用计算机模拟凝聚体三维分形生长情况,采用回转半径法计算三维DLA模型的分形维数。结果表明,近邻条件不同长成了不同的凝聚体外貌,但三维DLA模型有相同的分形维数,说明凝聚体的分形维数与点阵的结构在小范围粒子数内关系不大。 |
关键词: DLA模型 分形维数 计算机模拟 回旋半径 |
DOI: |
投稿时间:2006-08-25修订日期:2006-11-14 |
基金项目:2006年度广西教育厅自筹经费项目(桂教科研[2006]26号No.222)资助 |
|
Computer Simulation for Three-dimension Fractal Growth and Its Dimension |
PANG Shou-quan1, CHEN Le2, CHEN Jie1, ZHOU Shan-dong1
|
(1.Deparment of Physics and Information Science, Yulin Teachers'College, Yulin, Guangxi, 537000, China;2.College of Physics and Electron Engineering, Guangxi Normal University, Guilin, Guangxi, 541004, China) |
Abstract: |
According to the rule of three dimensional DLA,this paper uses the computer and simulates the three-dimensional fractal growth under the condition of nearest neighbor and subordinate neighbor,and calculates the fractal dimension of three dimensional DLA with the method of radius of gyration.The result shows that the clusters have the same fractal dimension despite their growth in different nearby conditions and different appearance,which shows that the fractal dimension of cluster is not associated with the structure of lattice in the small range of particle number. |
Key words: DLA model the fractal dimension computer simulating convoluted radius |