摘要: |
利用Riccati技巧以及积分平均技巧,得到判别二阶微分方程(r(t)ψ(x(t))x'(t))'+p(t)f(x(t))g(x('t))=0,二阶非线性时滞微分方程(r(t)ψ(x(t))x'(t))'+p(t)f(x(τ(t)))g(x('t))=0和(r(t)ψ(x(t))x'(t))'+p(t)f(x(t),x(τ(t)))g(x('t))=0,其中t ≥ t0,振动的3个新的充分性定理.利用这3个新的充分性定理可以简单地判断方程的振动性. |
关键词: 微分方程 振动 Riccati变换 |
DOI: |
投稿时间:2005-06-29修订日期:2005-08-29 |
基金项目: |
|
Oscillation of a Class of Second Order Nonlinear Differential Equation |
JIA Dui-hong, TANG Qing-gan
|
(Department of Computational Science and Mathematics, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China) |
Abstract: |
In this paper,we discuss a class of the second order nonlinear different equation:(r(t)ψ(x(t))x'(t))'+p(t)f(x(t))g(x('t))=0,t ≥ t0,and the second order nonlinear delay different equation:(r(t)ψ(x(t))x'(t))'+p(t)f(x(τ(t)))g(x'(t))=0,(r(t)ψ(x(t))x'(t))'+p(t)f(x(t),x(τ(t)))g(x'(t))=0,t ≥ t0.We obtain three new sufficient condition by the Riccati-type transformation and integral technique.By these oscillation theorems,we can simply estimate the oscillation of the equation. |
Key words: differential equation oscillation Riccati-type transformation |