引用本文
  • 韦艳艳,李陶深.基于Stacking框架的学习机制研究[J].广西科学院学报,2004,(4):231-233.    [点击复制]
  • Wei Yanyan,Li Taoshen.A Researches on Learning Mechanism Based on Stacking Framework[J].Journal of Guangxi Academy of Sciences,2004,(4):231-233.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 336次   下载 344 本文二维码信息
码上扫一扫!
基于Stacking框架的学习机制研究
韦艳艳, 李陶深
0
(广西大学计算机与电子信息学院, 广西南宁 530004)
摘要:
分析Stacking框架的基本原理,T1空间的数据表示和Stacking的缺陷,认为基于Stacking框架的学习能够有效地提高学习效果,但是在分类器个数增大时可能会导致元层训练数据规模增加。提出对底层分类器输出的后验概率用加权平均的方法构造元训练样本,减少二次建模的时间开销.该方法能够弥补由于对平均后验概率进行简单平均而丧失的模型输出特征,纠正分类偏差
关键词:  学习机制  Stacking  元学习  分类  分类器组合
DOI:
投稿时间:2004-05-17
基金项目:广西留学回国人员科学基金项目(桂科回0342001);广西教育厅科技项目(桂教科研[2001]401号)联合资助。
A Researches on Learning Mechanism Based on Stacking Framework
Wei Yanyan, Li Taoshen
(Coll. of Comp. & Elec. Info., Guangxi Univ., Nanning, Guangxi, 530004, China)
Abstract:
One of disadvantages in Stacking method of the classifier is that the size of meta training examples increases when the number of base classifiers goes up.An approach to overcome this disadvantage is presented,in which the weighted average distribution of the posterior probability of the classifiers is used to form the meta training set.Experiment result shows that this approach can improve the output character lost caused by the average distribution of the posterior probability,and correct the mistakes made by base classifiers.
Key words:  learning mechanism  stacking  meta learning  classification  classifiers combination

用微信扫一扫

用微信扫一扫