引用本文: |
-
罗海鹏,苏文龙,吴康,黎贞崇.基于并行算法的Ramsey数R(3,q)的2个新下界[J].广西科学院学报,2003,(4):145-149. [点击复制]
- Luo Haipeng,Su Wenlong,Wu Kang,Li Zhenchong.Two New Lower Bounds for Ramsey Numbers R(3,q) Based on the Parallel Algorithm[J].Journal of Guangxi Academy of Sciences,2003,(4):145-149. [点击复制]
|
|
摘要: |
用并行算法寻求有效的参数集,构造素数阶循环图,得到二色Ramsey数R(3,q)的2个新下界:R(3,24)≥140,R(3,25)≥143. |
关键词: Ramsey数 下界 素数阶循环图 并行算法 |
DOI: |
投稿时间:2003-08-03 |
基金项目:国家自然科学基金(10161003);广西自然科学基金(桂科回0342002)资助项目 |
|
Two New Lower Bounds for Ramsey Numbers R(3,q) Based on the Parallel Algorithm |
Luo Haipeng1, Su Wenlong2, Wu Kang3, Li Zhenchong1
|
(1.Guangxi Academy of Sciences, Nanning, 530022;2.Wuzhou Branch of Guangxi University, Wuzhou, 543002;3.Math. Dept., South China Normal University, Guangzhou, 510631) |
Abstract: |
Use parallel algorithm to find effective parameter sets,and construct prime-order circulant graphs.Two new lower bounds for 2-color Ramsey numbers R(3,q) are obtained.They are:R(3,24) ≥ 140,R(3,25) ≥ 143. |
Key words: Ramsey number lower bound prime-order circulant graph parallel algorithm |