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Abstract:Given a simple graph G and positive integers a; ,a; »***ya, » we write G— (a, ya; ,***,
a;)? (resp. G — (a,,a;,**,a,)) if for any & -coloring of V(G) (resp. E(G) ) in which each
vertex (edge) is colored with an r -subset of {1,:*+,k}. There exists a complete subgraph of
order a; in which every vertex (resp. edge) is colored with an r -subset containing color i for
somei € {1,--,k} .In this paper, for integer t > max{a;,a;,***sa,} » the set-coloring ver-
tex (resp. edge) Folkman number is defined and studied, F'? (a, sas,***sa, 3¢2) =min{| V(G)
| :G — (aysaz+++sa:)° and K, & G} (resp. F” (a,saz,***sa,;t) =min{| V(G) |: G — (a;,
asy - ya;)t and K, & G}.)
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0 Introduction

Y B8 :2014-11-10 Let G be a finite simple graph that contains no
EEEM FRAAITL), B HARRA, FTEANEBRR B loops or multiple edges. Denote by V(G) the set of
B AR ERI. its vertices and E(G) the set of its edges. A graph

xERARKBFELTE (WHES 11361008, 61309015) 1)~

that may contain multiple edges but does not con-
FIEHRAZH LT H(2011GXNSFA018142) ¥ B,

tain loops is called a multigraph. We only consider
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graphs without loops in this paper. A cycle of order
n1s denoted by C, . A complete graph of order n is
denoted by K, . The clique number of G is denoted
by ¢/(G) . A (s,t) graph is a graph that contains
neither an s -clique nor a ¢ -independent set, The set
{1,2,+,k} is denoted by [%£] .

Throughout this paper, supposing ajsaz»***»
a s sat and r are positive integers,where 1 < r
< kanda; > 2forany: € [£].

We write G— (a; ya; ,***,a,)? (resp. G— (a, ,
as s ,a,).) if for every k -coloring of V(G) (resp.
E(G) ) in which each vertex (edge) is colored with
an r -subset of [£], there exists a complete sub-
graph of order a; in which every vertex (resp. edge)
is colored with an r -subset of [ £] containing color i
for somei € [&].

In most coloring problems in graph theory,we
often color a vertex or an edge with one and only
one color. Such a coloring was generalized by some
graph theorists, such that every edge or vertex is
not mapped to one color, but a subset of the given
color set [£].

In reference[ 1], Harary et al studied Ramsey
numbers for multigraph. They said that it appears
there are no new interesting Ramsey numbers for
multigraphs. They obtained such a conclusion be-
cause that they admitted the edges between the
same pair of vertices colored with same colors,
rather than used the idea of set-colorings.

In reference[ 2], the multigraph Ramsey num-
ber f” (ay ya;,**sa,) was defined to be the mini-
mum positive integer n such that K, > (a;,a;,**,
ay)i . Note that set-coloring of edges in a graph is
the same as the edge-coloring of a related multi-
graph,in which the edges between the same pair of
vertices must be in different colors. So £’ (a, sa;,
+++,a;) is the Ramsey number for multigraphs in
which each pair of vertices are joined by r edges. It
is a generalization of the classic Ramsey number,
because that the classic Ramsey number R(a; sa;»
ceevay) = P lagsas s vay).

Now let us give an example to tell why we
think multigraph Ramsey numbers,i. e. the set-col-

oring generalization of classical Ramsey numbers,

may be interesting and important. In reference[ 2],

it was proved thatif £ > r > 1,9 > 3,then

1

1 [N

@ = e A,
So

P (@) = ()7 (Lo,
We know that f{” (¢) <X R(g,q) ,and the former
may be much smaller than the later. But on the
other hand, we do know how to give R(q,q) such a
lower bound now.

For positive integer t > max{a;sazs***sas} »
let

F (aysaz,,a,3t) = {G:G — (a1,a;,°,
ay)? and c(G) < t}, and

F.7(aisas, yar3t) = {G:G — (a;,a;,+,
a): and  (G) < t}.

The set-coloring vertex Folkman number is defined
as

F (ayyaz,5a,3t) = min{ | V(&) |:G €
FPaysaz = sapst) by
and the set-coloring edge Folkman number is de-
fined as

F” (aysa:,* ax;t) = min{| V(G) |:G €

F{(ay,az 5% sau;3t) .
If a;, =a, =+ =a, =a ,we denote F{” (a; ya; +»+** sa;;
t) (resp. F{”(ai,as,° 5a,35t) ) as F.i” (a;t) (re-
sp. F.i” (a;t) ), and F” (ay,as,+*,a,3t) (resp.
F{ (ay,az, 5a,3t) ) as F,{” (ast) (resp. F.{” (a;
).

Thus vertex Folkman number F,(a;,a;,,
ay;t) = F(a;,a;,***,a,3t) and edge Folkman
number F,(a;,a;,**,a,3t) =F" (a,.a;,**ya,3t).
In 1970,Folkman’® proved that for any integer ¢ >
max{a, ,azs,***ra;) » both F,(a;,az,*+,a,;t) and
F.(a, ,a;;t) were nonempty. His result was gener-
alized to F,(a, ,a; »***ya,;t) for arbitrary & > 2 by
Nesettil et alt*,

There are many new problems to be studied,
in which some need much computation. We wish
that these set- coloring generalizations of vertex
Folkman numbers and edge Folkman numbers will
be interesting for mathematicians and computer

scientists,
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The rest of this paper is organized as follows,
In Section 1 some basic results are proved. In Sec-
tion 2, the upper bound for set - coloring vertex
Folkman number is studied. In Section 3 a result
between the set- coloring edge Folkman number
and the set-coloring vertex Folkman number is
proved. The value of F¥(3,3,3;4) is decided in

Section 4.

1 Some basic results on set-coloring Folkman

numbers

In this section we will give some basic results
on set-coloring vertex and edge Folkman numbers,
most without proofs, because that they can be
proved similar to some known results on either
multigraph Ramsey numbers or vertex and edge
Folkman numbers.

It is not difficult to know the existence of set-
coloring vertex and edge Folkman numbers. In
fact, we have the following two theorems on set-
coloring vertex Folkman numbers, which are simi-
lar to those on multigraph Ramsey numbers in ref-
erence[ 2 ]. It is not difficult to see that we can
prove similar theorems on set-coloring edge Folk-
man numbers. '

Theorem 1 If » == 2 and ¢ > max{a;,az,**,
aw1 ) sthen

F& (aysagssazst) < F7 (ap,az,°samm3t)
L F{ P (aysaz s sagst).

Theorem 2
gers,and ¢ > a = 2,then F,{” (a;t) << F,$ (ast) .
We need only to prove that F,§ (a;t) € F,i” (as
). LetG € F,% (ast) . UG & F,;” (a;t) ,there is
a coloring of V(G) in which each vertex vis colored

with an r - subset C[v] of [£], such that there

doesn’t exist any monochromatic K, in color ¢ for

If ryksa,t,s are all positive inte-

some i € [k ]. Based on this set-coloring method,
we color each vertex v € V(G) with {j | j € [sk],
j=1i(mod &) for some i € C[v]}.SoF,&’ (a;1) &
F,” Case). F.$ (ast) € F.{” (a;3t) can be proved
similarly.

The off-diagonal case of Theorem 2 can be ob-
tained similarly. For instance,we have 13=F,(3,4;
5) << F?(3,3,4,4;5) .

The following theorem is similar to the result
for r =1 on vertex Folkman numbers,

Theorem 3 1f b, ,b, ¢, ,t; are integers, b, < t;
and b, < t, .then

FPCaysazsorsap by + besty + 1, + 1) <
FCaysaz s vapsbrsty + 1) 4+ FO (ay a5 ass
byst, +1) .

The following theorem is a generalization of a
theorem in reference[ 5], and can be proved simi-
larly.

Ifr>=1,a,a;, sas = 2,b1,b;»
«oyb, =2 and s = max{a;,as+ " ra,} o2 == max{b,,
by s+ ,be}, then

F Ca by yashs s+ sabesst + 1) < Fo(aryaz,
wsai s+ DFY (bysby s sbest+ 1.

Theorem 4

2 The upper bound for set-coloring vertex

Folkman number

In this section we will prove a theorem on the
upper bound for the set-coloring vertex Folkman
number, by which we can obtain the upper bounds
for some set - coloring vertex Folkman numbers
based on known upper bounds on related vertex
Folkman numbers.

Theorem 5 Given a K,-free graph G of order

n, suppose the order of the maximum K, -free in-
duced subgraph of Gis £, (G) . If Zlef,-(G) <m,

then Fff) (al Qg 9 Ay ?t) < n.
Proof If F”(ay,a;,"**sas3t) > n,then G
has kKa,-free induced subgraphs G, such that any

vertex among G is in just r ones of G; ,where 1 <{ ¢
k

< k. Thus 2 | V(G,) | =m .SinceG;is aK,-free
i=1

induced subgraph of G, | V(G) | < f.(G).

k k
Therefore Y, f.(G) = D, | V(G) |=m . Thus if
i= i=1

i=1
k
Zf;(G) < m sthen F” (ay,as s sas;t) < n.
i=1

By Theorem 5,we can see that for a given K,-
free graph G of order n , if the order of the maxi-
mum K,-free induced subgraph of G is f(G), and
Ef(G) << m ,then F,{” (a3t) <{ n. For instance,if
(s — 1)k < m and n << R(t,s), then F,;” (2;)<n.

Suppose f,.(n) =min {max {| S|:S &€ V(H)
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and H[ S] contains no K.}, where the minimum is
taken over all K,-free graphs H of order n (see ref-
erence[ 6]). Then we have the following corollary.

Corollary 1 If £f,,(n) << n, then F$ (a;
ty < n.

In reference[ 7], it was proved that for every
integer s => 2, there is a positive constant ¢ =c¢(s) so
that for every integer n, f,, .+ (n) << en”® . Based on
this result, reference [ 7] proved the following
statement for » = 1, when the asymptotic is taken
in k.

Corollary 2 For every integer s, there is a
positive constant c=c(s) such that {or every integer
By Fo (sys+ 1) < kB,

It is often difficult to determine the value of
F,i7(¢t5t+1), even fort=2,r=1 and general k. In
the following theorem we decide the values of some
set-coloring vertex Folkman numbers in a simple
case,

Theorem 6 If (k—r):<Ck ,thenF,;” (£5¢+1)

Proof Since that F,;” (¢3¢ + 1) = ¢t ,s0 we
need only prove F,{” (¢5:4+1) < ¢ . If for any colo-
ring of V(K,) in which each vertex is colored with
an r -subset of [£] ,there doesn’t exist K, in which
every vertex is colored with 7 for some : € [k],
then the amount of vertex colored by any color in
[%2]is not more thant— 1. If k(¢ —1) < tr ,we can
see that there exists K, in which every vertex is col-
ored with an r -subset of (%] containing color 7 for
somei € [k] . H(k—r)t <k, ,thenk(t —1) < tr
and F;”" (t5¢+1) < ¢.

3 A result between set-coloring edge and ver-

tex Folkman numbers

An inequality on the set-coloring vertex Folk-
man number and the set-coloring edge Folkman
number is given in the following theorem, which
may be considered as a generalization of the case r
=1 for the vertex Folkman number and the edge
Folkman number.

Theorem 7 Let R, = f”(a,,a;,**va; 1 ya; —
l,a;1,a;) foreveryi € [£] sif max{R, R, ,,
R} +1 <t ,then F” (ayyap 5+t sapst) << FO (R,

Ry, Ryt — 1)+ 1.

Proof LetG € F”(R,,R;,**,R,;t—1) ,and
C be any coloring of the edges in G + v with r -sub-
set of [k]. We color each vertex x € G with the
color set of the edge (v,x) in C . Then there exists i
€ [%] such that G contains a complete subgraph
Ky, with all the vertices in color i . If K, contains
K, -1 with all edges in color i , then K, + v con-
tains a complete graph K, with all edges incolori.
If it does not, then there exists j different from i
such that K, contains K., with all edges in colorj .
Thus,any coloring of the edges in G+ v with r -sub-
set of [ ] must result in a complete subgraph K. of
which all edges are colored with » -subset of [£]

that contains 7 for somei € [£].

4 The value of a small set-coloring edge

Folkman number

By Theorem 1, we have F!¥(3,3,3;4) <
F.(3,3;4) . In this section we will decide the value
of F{¥(3,3,3;4) . Tt is not difficult to have lemma
1 which will be used in the proof of Theorem 8.
Lemma 1 is a generalization of the known result on
vertex and edge Folkman numbers, i. e. the case
r=1. .

Lemma 1 For integer ¢ > max{a; ,a;,**,
ar) »if G € F”(a; a3, sa,3t) and H € F (a, ,
azstsapst) sthen y(G) = f(aisa;,++5a,) and
r (D= D) (=D A1

Theorem 8 F!¥(3,3,3;4)=11.

Proof Let H be a K, free graph of order
F®(3,3,3;4) such that H—> (3,3,3)%. By Lemma
1 and f5¥ (3) =5 (see reference[2]) , we have y (H)
>5.% F*(3,3,3;4) > F.(2,2,2,2;4) =11,

On the other hand,a K;free graph of order 11
in F,(2,2,2,2;4), as shown in Figure 1,was found
by Nenov and can be found in reference[ 8]. Let
this graph be G.

Suppose the color set is {1,2,3} . We know
there is a natural map f between an edge-coloring
C® of G and an edge-coloring C of G as follows.
Note subsets of order 2 in {1,2,3} is used in C? ,
and subsets of order 1 in {1,2,3} is used inC. The

edge between u and v in C(G) is in the color differ-
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ent from the two colors used on the edge between u
and v in C?(G). So if G € F*(3,3,3;4) , then
there must be a coloring C(G) in which the three
edges of any K; in C(G) are in three different col-
ors. Now we will prove that there is no such an
edge coloring C(G) for the graph G in Figure 1.
Otherwise, suppose there is an edge-coloring C(G)
in which the three edges of any K; in C(G) are in
three different colors. Thus in such a C(G) ,the 5
edges adjacent to vertex 11 must be in three col-
ors,we might suppose two edge are in color 1, two

edge are in color 2, and one edge is in color 3 as

well. We may suppose (5,11) is in color 3,(1,11)
and (3,11) arein color 1,(2,11) and (4,11) are in
color 2. Other cases can be considered similarly. So
we have C(1,2) = C(2,3) = (C(3,4) = {3} , and

C(1,5) ={2},C(4,5) ={1}.
9

Fig. 1 A graph with chromatic number 5 without 4-
cliques
C(1,6) = {1} because it is different from
C(1,2)={3}and C(1,5) = {2} . C(5,6) ={3} be-
cause it is different from C(1,5) = {2} and C(1,6)
=1{1}. C(4,9) = {2} because it is different from
C(3,4)=1{3} and C(4,5)={1}. C(5,9) = {3} be-
cause it is different from C(4,5) = {1} and C(4,9)
={2}.

So C(5,6) = {3} and C(5,9) = {3}, and the
three edges in the subgraph of G induced by 5.6,9
can not be in three different colors, and this is a
contradiction. Thus F'¥ (3,3,3;4) < 11.

Therefore F{*(3,3,3;4) =11.
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