坭兴陶中微量元素的 ICP-MS 半定量分析方法研究* Semi-quantitative Analysis of Elements in Nixing China by ICP-MS

周 琳,谢 涛,龙智翔,李 健 ZHOU Lin,XIE Tao,LONG Zhi-xiang,LI Jian

(广西分析测试研究中心,广西南宁 530022)

(Guangxi Research Center of Analysis and Testing, Nanning, Guangxi, 530022, China)

摘要:建立一种 ICP-MS 半定量分析坭兴陶样品的方法。该方法采用获得的质量-灵敏度曲线确定样品中存在的元素种类及大致含量范围。经与标准物质 GBW07402 对照,坭兴陶样品中的 7 Li、 51 V、 52 Cr、 55 Mn、 59 Co、 60 Ni、 55 Cu、 59 Ga、 88 Sr、 93 Nb、 137 Ba、 139 La、 140 Ce 等 13 种微量元素的含量范围为 7 ~350mg/kg,分析准确度为 $^{\pm}$ 50%。

关键词: 坭兴陶 元素 ICP-MS 半定量 定性 分析

中图法分类号:O657.63 文献标识码:A 文章编号:1002-7378(2010)03-0333-02

Abstract: ICP-MS is used to conduct qualitative and semi-quantitative analysis of elements in Nixing china samples. The types and concentration range of elements in samples were detected. The results showed there were 13 elements including ⁷Li, ⁵¹V, ⁵²Cr, ⁵⁵Mn, ⁵⁹Co, ⁶⁰Ni, ⁶⁵Cu, ⁶⁹Ga, ⁸⁸Sr, ⁹³Nb, ¹³⁷Ba, ¹³⁹La and ¹⁴⁰Ce in Nixing china. The contents of elements were ranged from $7 \sim 350 \mu g/g$ and RSD was $\pm 50 \%$.

Key words: Nixing china, element, ICP-MS, semi-quantitative analysis, qualitative, analysis

等离子质谱仪(ICP-MS)具有高灵敏度、高选择 性、同时多元素检测等特点[1],除能进行常规定量分 析外,还拓展了许多功能,其中半定量分析为 ICP-MS 所特有的较为有用的一项功能。常规定量分析 中,对于需进行分析测量的每一种元素都必须提供 标准溶液,在完成标准曲线后才能进行分析测定;而 ICP-MS 半定量分析不需要对所进行分析测试的每 一个元素都提供标准物质,它只需以一种或几种已 知浓度的元素作为标准溶液,以此为基础对 ICP-MS 所能分析的所有元素或被选定测量的元素进行 测量,从而获得样品中有何种元素及元素浓度的相 关信息。由此可以大概了解样品中主要含有哪些元 素和是否存在高含量元素,并确认它们的浓度是否 高于可测定的线性动态范围,以便决定样品是否需 要稀释,以及了解背景值及干扰水平[2]。本文使用 ICP-MS 对坭兴陶样品进行半定量分析,了解样品

中的元素种类及大致含量范围,为坭兴陶样品的进一步分析研究提供参考。

1 实验部分

1.1 试剂与仪器

X7 电感耦合等离子体质谱仪(美国热电公司生产),氢氟酸、硝酸、高氯酸均为分析纯,超纯水。 9 Be、 115 In、 209 Bi 调谐液中Be,In,Bi 离子浓度皆为 100 μ g · L $^{-1}$)。

1.2 样品处理

采用 HF-HNO₃-HClO₄ 消解体系^[3], 称取 0. 2g 样品加人 4ml HF,5ml HNO₃,1ml HClO₄,于电热板 上消化至溶液澄清透明,HF 蒸发完后加 2ml HNO₃ 定容至 50ml 备用。

1.3 实验步骤

用调谐液对仪器各项指标进行调整,使仪器在比较理想状态时进行样品分析。ICP-MS 仪器条件为:功率 1250W,冷却气流量 13.0 L·min⁻¹,辅助气流量 0.76 L·min⁻¹,载气流量 1.0 L·min⁻¹,进样速度 1.0 mL·min⁻¹,采样深度 7mm,采样时间 13s, Survey 扫描方式。以 100µg·L⁻¹的调谐液做一

收稿日期:2010-06-21

作者简介:周 琳(1965-),女,工程师,主要从事有机生化分析研究 及大型仪器设备管理工作。

本广西区属公益性科研院所基本科研业务专项项目(2008AC2009) 资助。

条平滑的质量-灵敏度曲线,以此曲线为基础,对国标土壤 GBW07402 及坭兴陶样品进行半定量分析,样品通过质量数与相应信号的强度来提供半定量分析,据。质量-灵敏度曲线的获得:液体样品通过蠕动泵引入到一个雾化器产生气溶胶。由强射频场使氩泵引入到一个雾化器产生气溶胶。由强射频场使氩泵原子之间发生碰撞,产生一个高能等离子体,气溶胶在同心石英管中瞬间被等离子体解离(等离子体温度为6000~10000 K),形成被分析原子,同时被电离。被分析离子由一组离子透镜聚焦进人四极杆质量分析器,按其质荷比进行分离,最后,采用电子倍增器测量离子,由一个计数器收集每个质量的计数。质谱图中每个元素的同位素出现在其不同的质量上,其峰强度与该元素在样品溶液中同位素的初始浓度接成正比。

2 结果与分析

2.1 质量-灵敏度曲线

根据调谐液所做的质量-灵敏度曲线如图 1 所示。所有元素的质量数大致按此曲线分布,通过信号的强弱比较从而推断其含量范围。

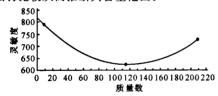


图 1 质量-灵敏度曲线

2.2 标准物质各元素含量

依据调谐液的浓度,响应得到国标土壤 GBW07402标准物质中各元素含量如表1所示,准 确度为±50%左右。

表 1 GBW07402 标准物质各元素含量

元素	测量值(mg/kg)	标准值(mg/kg)	RSD (%)
7Li	21. 2	22±1	-3.6
51 V	52. 2	62±6	-15.8
52Cr	48. 3	47±6	+2.77
55Mn	587	510±25	+15.1
59Co	9. 84	8.7 \pm 1.4	+13.1
60Ni	22. 8	19.4±1.9	+17.5
⁶⁵ Cu	22. 5	16.3±1.4	+38.0
69Ga	50. 8	88±5	-42.3
88Sr	120	187±14	-35.8
⁹³ Nb	16. 3	27±3	-39.6
137Ba	454	930±81	-51.2
139La	93. 1	164±16	-43.2
140Ce	294	402±25	-26.9

2.3 坭兴陶样品半定量分析结果

根据图 2 的质谱图我们大致能得出7Li、⁵¹V、 52 Cr、⁵⁵Mn、⁵⁹Co、⁶⁰Ni、⁶⁵Cu、⁶⁹Ga、⁸⁸Sr、⁹³Nb、¹³⁷Ba、 ¹³⁹La、¹⁴⁰Ce 13 种微量元素的含量范围为 7~350mg/kg(见表 2)。同时我们可以看到¹⁰B、²³Na、²⁴Mg、 ²⁷Al、²⁸Si、³²S、³⁹K、⁴⁰Ca、⁵⁵Fe 有很强的信号值,远远超出了其他微量元素,而这些元素只能靠其他仪器配合才能确定含量范围。

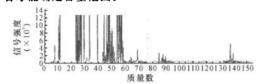


图 2 坭兴陶样品质谱

表 2 泥兴陶样品元素种类及含量

元寮	测量值(mg/kg)	元寮	测量值(mg/kg)
⁷ Li	69.8	⁶⁹ Ga	103
51 V	72. 6	⁸⁸ Sr	44.0
52Cr	59. 2	⁹³ Nb	7.76
⁵⁵ Mn	344	¹³⁷ Ba	134
⁵⁹ Co	12.0	139La	25. 4
60Ni	22. 6	¹⁴⁰ Ce	61.2
65Cu	25. 6		

3 结束语

对于 ICP-MS 所能分析的元素或选定分析的元素,依据所选定的标准,ICP-MS 能够进行快速定性和半定量,并能得到所能分析元素的半定量分析浓度值。本文实验结果表明,基于 ICP-MS 的半定量分析方法检出限低^[4]、测量速度快、测量元素多,准确度达到±50%,通过快速定性及半定量分析,可以为分析者提供溶液中有何种元素存在的信息,并为下一步进行定量分析提供了较为合理的浓度范围。

参考文献:

- [1] 刘虎生,邵宏翔. 电感耦合等离子体质谱技术与应用 [M]. 北京:化学工业出版社,2005.
- [2] 谢华林,李立波,文海初. 微波消解-ICP-MS 测定粉煤 灰中的重金属元素[J]. 冶金分析,2005(5):10-12.
- [3] 王小如. 电感耦合等离子体质谱应用实例[M]. 北京: 化学工业出版社,2005.
- [4] 汪尔康. 21 世纪的分析化学[M]. 北京:科学出版社, 1998.28.

(责任编辑:韦廷宗)