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Abstract: By using the bifurcation theory of dynamical systems to third-order nonlinear
Schrédinger equation,the smooth solitary wave solutions, kink and anti-kink wave solutions and
periodic wave solutions are obtained. Under different parametric conditions, various sufficient
conditions to guarantee the existence of the above solutions are given. Some exact explicit
parametric representations of the above waves are determined.
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1 Introduction

Karpman V.1 et al™! have recently considered
the behavior of steady quasisolitons solutions in two
cases for the third-order nonlinear Schrédinger
(NLS) equation
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where @, ,a, and a, are real coefficients. Third-order
nonlinear Schrédinger equation has different kinds of
soliton and quasisoliton solutions'?/.

In this paper,we study travelling wave solutions

in the parameter space of this system.
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Let ¥ = ¢(&)e'™ 0,6 = 2 — ¢t,
where ¢ is wave speed, A, is real constant. Then the

Equation (1) becomes
— i i) + 8 22— )+ F

ia, ($¢ + AP + i2a P+ ia,(§7 + 338" —
3¢ — A'¢) = 0., (2)

where ” prime” is the derivative with respect to &.

Setting real part and imaginary part as O,

respectively , we have
(3 = 3a)’ + (@ — L& + aip+ A —
a D =0 (3
and
(A—c =3¢ + (a) + 2a) ¢ + a;¢” = 0.
D)
Integrating Equation (4) once and setting integration

constants as 0,we have

a + 2a

" + (A —c — 3a;A")¢ + 3

# = 0.
(5)
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we have the same Equations (3) and (5). Let
P=8Q—c— )= Sla, L 2a) g 2,
then Equation (5) becomes Equation (6)
¢+ pp + g’ = 0. (6)
Obvious Equation (6) is equivalent to the Liénard
system
d d
di?:y’di‘gzipséiqysga 7

with the first integral

H($.y) = %yz + L+ Ly = (8

We investigate the bifurcations of phase portraits
of Equation (7) in the phase plane (¢,y) as the
parameters (p,q) are changed. To investigate all
possible bifurcations of solitary waves,kink and anti-
kink waves and periodic waves of Equation (1), we
need to find all periodic annuli and homoclinic orbits
and heteroclinic orbits of Equation (7),which depend
on the system parameters. The bifurcation theory of
dynamical systems'* plays an important role in our

study.

2 Bifurcations of phase portraits of
Equation (7)

For pq << 0 ,there exist three equilibrium points

of Equation (7)at ©(0,0),A, (4 A/ — 5,0); for

pq > 0 ,there exist one equilibrium point of Equation
(7)at @(0,0) ;for p = 0,q # 0, there exist one
equilibrium point of Equation (7)at @(0,0);p # 0,
q = 0, there exist one equilibrium point of Equation
(7)at ©(0,0).

Let M(¢,,0) be the coefficient matrix of the
linearized system of Equation (7) at an equilibrium
point (¢,,0) . Then we have

J($,,0) = det(M($,0)) = p + 3q¢;,

J(0,0) = p,Trace(M (¢,,0)) = 0.

By the theory of planar dynamical systems, we
know that, if J(0,0) = p>0 (or J(0,0) = p<T0),

then equilibrium point @(0,0) is a center (or a saddle

point) s if J(+ —5,0) — p < 0 (or J(+
A — 5,0) = p > 0), then equilibrium point A, (+
P

— ;,O) is a center (or a saddle point) ;if J(0,0)

= p = 0,9 # 0 ,then equilibrium point €(0,0) is a
high order equilibrium point. For H ($,y) defined by

Equation (8),we have

For a fixed &, the level curve H($,y) = h
defined by Equation (8) determines a set of invariant
curves of Equation (7). As h is varied, it defines
different families of orbits of Equation (7) with
different dynamical behaviors.

From the above analysis we obtain the different
phase portraits of Equation (7) shown in Figures 1

and 2 and 3.

1Y

(b) p=0,g <.
Fig.1 Phase portraits of Equation (7) when p = 0
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(a) p> 0,9 = 0.
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(b) p > 0.q > 0.
34 ¥

(c) p> 0,9 <O.
Fig. 2 Phase portraits of Equation (7) when p > 0

3 Exact explicit travelling wave solutions of

Equation (1)

For p = 0,9 << 0, Equations (7) and (8)

become
d dy .
d*?:y,dz.:quls3 (12
and
I 9 40 __
H(¢$,y) = 5V + z¢ = h. (13)

By using Systems (12) and (13) and the first
equation of System (12),we can obtain some exact
explicit parametric representations for the travelling
wave solutions of Equation (1). For System (12),
corresponding to H($,y) = h,H(0,0) = 0 defined
(13), we
representations of the arch orbit for the System (12)
(Fig. 1b))

by System obtain the parametric

(a) p<< 0,9 =0.

1.5
—1

(c) p<<0,qg<<O.
Fig. 3 Phase portraits of Equation (7) when p < 0

2 49
V= 2¢. av

From Equation (14),we obtain with parametric
representations for the exact explicit travelling wave
solutions of Equation (1)

—21
q &
It follows that Equation(1) has two exact

(15

==

explicit travelling wave solutions with the parametric

representations

bz — ct) :iA/_TZIid. (16)

For ¢ = 0,p << 0 ,Equations (7) and (8) become

d d
d—?zy,d—“;=—p¢ an

and
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H@y) = 4y + Lg =, (18)

By using Systems (18) and the first equation of
System (17), we can obtain some exact explicit
parametric representations for the travelling wave
solutions of Equation (1). For System (17),
corresponding to H($,y) = h,h € (— oo, + <o)
defined by System (18), we obtain the parametric
representations of the arch orbit for the system (17)
(Fig. 3a)

yi=h — pé. a9y

Thus, from Equation (14),we obtain the
parametric representations of the arch orbit as

fOHOWS:
¢ == *(6‘} - h e pc) (20)
2 Y4 ’ '

It follows that Equation (1) has two exact
explicit travelling wave solutions with the parametric
representations

95(1“— ) = %(ei =P (a—ct) + %eT M(x-ﬂn)'

2D
For p > 0,9 <0 ,corresponding to H (¢,y) = h,
defined by Equation (8),the Equation (7) has two
heteroclinic orbits connecting the saddle points A
and A_. Two orbits have the same algebraic equation
as follows. (Fig. 2¢)
¥=— éiq — PP — %95" =— %(952 + 5)2.
(22)
From Equation (22),we obtain the parametric

representations of the arch orbit as follows:

_ 4 P v
¢ =+ 5 tanh 25. (23)

It follows that Equation (1) has two exact
explicit travelling wave solutions with the parametric
representations

d(x — ct) =+ %tanh g(xfct). (24)

For p<C0,q>0 ,corresponding to H ($,y) = h,
defined by Equation (8),the Equation (7) has two
homoclinic orbits connecting the saddle points ©(0,
0). Two orbits have the same algebraic equation as

follows. (Fig. 3b)

2 LR A YR AT T
yi=—pé 5 ? y P (— ¢+

;2]))‘

(25)
Thus, from Equation (25), we obtain the
parametric representations of the arch orbit as

follows:

_ _q [— P
b= Al — 2Psech 5 &, (26)

It follows that Equation (1) has one exact

explicit travelling wave solution with the parametric

representations

gy = |4 — P _ .
$(x — ct) «/7 ZpseCh\/ % (x — ct).

27

4 The existence of smooth travelling wave

solutions of Equation (1)

In this section, we use the results of section 2 to
discuss the existence of smooth solitary wave and
periodic wave solutions. We first consider the
existence of smooth periodic wave solutions and
solitary wave solution and kink and anti-kink wave
solution.

Theorem 4. 1 (i) Suppose p = 0,qg > 0,
corresponding to a branch of the curves H (¢,y) = h,
h &€ (0, + o0), defined by Equation (8), the
Equation (1) has a smooth family of periodic wave
solutions (Fig. 1a) ;

(ii) Suppose p > 0,q = 0, corresponding to a
branch of the curves H(¢,y) = h,h € (0, + o),
defined by Equation (8), the Equation (1) has a
smooth family of periodic wave solutions (Fig. 2a) ;

(iii) Suppose p > 0,9 > 0 ,corresponding to a
branch of the curves H($,y) = h,h € (0, + =) ,
defined by Equation (8), the Equation (1) has a
smooth family of periodic wave solutions (Fig. 2b) ;

(iv) Suppose p > 0,9 < 0 , corresponding to a
branch of the curves H($,y) = h,h € (h,,h,) ,
defined by Equation (8), the Equation (1) has a
smooth family of periodic wave solutions(Fig. 2¢) ;

(v) Suppose p < 0,qg > 0 ,corresponding to a
branch of the curves H($,y) = h,h € (h,, + ©) ,
or h € (h,,h,) defined by Equation (8),the Equation
(1) has three smooth families of periodic wave
solutions (Fig. 3b).

Theorem 4.2 (i)Suppose p < 0,g > 0 ,then,
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corresponding to a branch of the curves H ($,y) = h,
defined by Equation (8),the Equation (1) has a pair
smooth solitary wave solutions with peak type and
valley type,respectively (Fig. 3b) ;

(i1) Suppose p > 0,qg < 0, then, corresponding
to a branch of the curves H($,y) = h, defined by
Equation (8),the Equation (1) has a smooth kink

and anti-kink wave solutions(Fig. 2¢).
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