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Abstract  Various colorings for edges of the complete graph K, ; were studied us-
ing constructive method. New lower bounds of three 3-color classical Ramsey
numbers were obtained: R(3,3,17) == 314,R(3,4,14) = 314,R(3,6,9) = 314.
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1 The main results

The computation of Ramsey numbers is a very hard problem in Combinatoricstd. So far the
best known lower bounds R(3,%,#) in the dynamic survey'™ are as follows; R(3,3,4) = 308,
R(3,3,5) == 451", R(3,3,6) == 60",R(3,3,7) = 74",R(3,3,9) = 110P,R(3,4,4) =
5581, R(3,4,5) = 800,

Based on References [8] and [10]) to [15] we have studied various colorings for edges of a
complete graph K, of prime number order, and three new lower bounds for » = 313 were ob-
tained

Theorem 1 R(3.3,17) => 314,R(3,4,14) = 314,R(3,6,9) == 314.

These three results have no previous records.

2 An algorithm for the computation of the clique number of the circulant graph

Let p be a prime number greater than 5. Let Z, = {{} — p)/2,-, — 1,0,1.>+, (p —
1)/2} denote the finite field of  elements. We define a total order in Z, in the natural way, i. e. »
(1 — p)/2<C e <<—1<C0<C1 < << (p— 1)/2. The absolute value of an element in Z, is
defined in the usual sense. Let Z; = {1,2.+,(p — 1)/2}.
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Definition 1 Let A be a subset of Z}. The graph G,(A) is defined as follows: the set of ver-
tices of G,{A) is Z, and there is an edge from a vertex x to another vertex yif and only if |y — x|
£ A. We call G,(A) the circulant graph of order p associated with the parameter set 4.

Lamma 1 Letea=1lora==—1. Letd € Z,, Then for any parameter set A Z} the trans-
formation f ;x|-» ax + b gives rise to an automorphisin of the graph G,(A).

Proof Obviously the map f is injective and surjective from Z,t0 Z,. The equality | f(z) —
f(| = laxr — ay| = |z — y| implies that {z,¥} is an edge of ,(A) if and only if {f(z),
F(y)} is an edge of G,(A), ]

L.emma 1 demonstrates the fundamental property of G,(A). We are going to investigate oth-
er properties.

Definition 2 Let Abe a subset of Z; and let B= {z € Z,| |z| € A}. Let GLB] denote the
subgraph of G,(A) whaose vertex set is Band {z,y} is an edge ofl G[ B]if and only if z,y € Band
|r — y| € A. We call G[ B] the derived graph of G,(A4).

Theorem 2 Let [A] and [ B8] denote the clique numbers of G,(A) and G[B] respectively.
Then [A] = [B] -+ 1.

Proof It follows from Definition 2 that if the vertex 0 is added to a clique of G[B] with
[ B] vertices then a clique of G,(A) with [B] + 1 vertices is obtained. This proves [A] = [B] +
1. It remains to show [A] << [B] + 1.

Assume that # = [A] 2= 2. Then there is a clique of G,(A) with & vertices {z 22,y 7},
Let f(x) = & — x for every x € G,(A). Then {f(x;),+,f(x:)} is a clique of GLB] by Defini-
tion 2. This shows [B] =% — 1.[]

Definition 2 implies that ¥y € B, |[y—a| € Aif and only if —y € B, | — y+a| € A, Thus
we have

Lemma 2 Fora € B, let d{a) denote the number of elements of the set {y € B||y — a|
€ A}. Thend{a) = d(— a).

Definition 3 An order in B is defined as follows, Letz,y € B.

1) Hd(x) <d(y), thenx < y;

2) Hd(z) =d(¥) and |z| < |y]|, then x <{ y;

D Ud(x) =d(y)yx=— yand x >> 0, then x << y.

It is easy to see that < is a total order of B. We say that z is a predecessor of y (or ¥ is a suc-
cessor of x ) if = << 3.

Definition 4 A chainx, <2, < *» < z:in Bwith 22> 1 is called a chain of length £ initiated
from z,. Moreover, if ix; — x;| € Afor all 0 <7 < j < &, then this chain is called an A- chain,
The maximal length of all A- chains initiated [rom zy is denoted by I(x). If 25 has no successor z;
with |z, ~ ;| € A, then deline I{z,) = 0.

Theorem 3 The following equality holds:

[B] =1+ max{l{a)|a € A}. (1)

Proof 1f [B] = 1 then (1) is obviously true. Henceforth we assume that [B] > 1.

Tt follows [rom definition directly that the £ 4 1 vertices of an A- chain x, < 2, < *=+ < &,
form a clique of GLB]. Hence [B] = & + 1. This shows that the left hand side of (1) is greater
than or equal to the right hand side of (1).

Let [B) =1+ &(k = 1). Then there is a clique of 2 4 1 vertices in G[B]. Arrange these
vertices as 2o < x; <+ < x, and we get an A- chain in B. There are two cases for x,:

Case 1; x, € A

In this case, we have 2 << {(xz,) < max{{(a)|a € A}.

Case 2: x, & A.

Then — x, € A and thus 1, << 0. Lemma 1 implies that the transformation f:x|>— zis an
automorphism of G,(A). Consequently f maps the clique {zy,z;,+**,2,} to a clique {— zpy — 215
v, z; )t of GLB]. We claim that — &, <— zfor 1 <0 ¢ <C &, It follows from Delinition 3 that one
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of the following conditions is satisfied :

1) dxe) < d{(x:);

2) dixp) = d(x;) and |zo| <T |2,

Lemma 2 implies that one of the following conditions is satistied .

1) d{(— x) <<d({— x:);

Dd{— xy) =d{(— x)and | — x| < | — a].

This proves our claim. Hence there exists an A- chain of length £ initiated from — z,, which
implies that 2=<S7(- x,) << max{{{a)|a € A}. Therefore the left hand side of (1) is less than or
equal to the right hand side of (1), This concludes the proof of the theorem. [

Note that if @ € A satisflies |v — a| & Afor every v € B, thend{(a} = 0and i(a) = O by
virtue of l.emma 2 and Definition 4.

Corollay 1 The equality max{d(a) |a € A} = Gholds if and only if [B] == 1.

Now we describe an algorithm to calculate the clique number of G,(A) based on the above
results,

Algorithm 1

Step 1) Generate the parameter set A for a given prime number p.

Step 2) Let B = {x||x]| € A}.

Step 3) For every a € A, compute d(a). I max {d(a)|a € A} =0, let [B] = 1 and jump
to Step 7.

Step 4) Rearrange the elements of B in terms of the order defined in Definition 3; a,, — a,,
@zy — Qyy*** 34,y — @, where r is the cardinality of A. Set7 = 1.

"Step 5) List all A- chains initiated from a; and compute I{a;) in terms of Definition 4.

Step 6)Increase:by 1. If i <7 jump to Step 5, otherwise we obtain [ B == 1 + max{/{a) |1
< 1 £ r} according to Theorem 3.

Step 7) [A] = [B] + 1 according to Theorem 2 and terminate the process.

Remark We may use the standard depth-first search technique to find the longest A- chain
initiated from a;in Step 6. Since the search is restricted to the chains intiated {rom a point in A and
since the order we have introduced in B can significantly reduce the amout of calculation during
the process of backtracking, our algorithm is rather effective.

3 Cligque numbers of some circulant graphs G;;; (A4)

In this section we assume that p = 313 . For some parameter sets A, we have computed the
cliqgue numbers of the corresponding graphs G,(A,) .

Lemma 3 For the parameter sets

A, = {1,565, 7, 1%, 23, 27, 33, 36, 44, 18, 58, 61, 64, 73, 79, 82, 93, 95, 103,
111, 113, 124, 133, 135, 148, 150},

A; = {2, 10, 13, 14, 17, 38, 43, 46, 47, 54, 65, 66, 72, 87, 88, 91, 96, 107,
116, 122, 123, 127, 128, 146, 145, 155},

A, = {10, 14, 17, 30, 40, 41, 42, 43, 46, 47, 51, 53, 56, 62, 65, 68, 74, 89,
90, 91, 101, 109, 110, 118. 120, 122, 123, 125, 126, 127, 125, 134, 138, 141, 145,
146, 149, 153, 154},

A, = {9, 11, 12, 16, 18, 22, 24, 29, 30, 31, 32, 37, 40, 42, 45, 30, 51, 53,
55, 56, 60, 63, 68, 70, 75, 77, 78, 80, 83, 84, 85, 98, 100, 102, 104, 105, 106,
112, 117, 118, 119, 125, 129, 134, 136, 138, 140, 141, 142, 143, 147, 156},

A, = {2, 3, 4, 6, &, 10, 13, 14. 15, 17, 20, 21, 25, 26, 28, 34, 35, 38, 39,
41, 43, 46, 47, 49, 52, 54, 57, 58, 62, 65, 66, 67, 69, 71, 72, 74, 76, 81, 86, 87,
88, &5, 90, 91, H2, %4, 96, 97, 9%, 101, 167, 108, 109, 110, 114, 115, 116, 120,
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121, 122, 123, 126, 127, 128, 130, 131, 132, 137, 139, 144, 145, 146, 149, 151, 132,
153, 154, 155},

As = {2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 18. 20, 21, 22, 24, 25, 26, 28, 29,
31, 32, 34, 35, 37, 38, 39, 45, 49, 50, 52, 54, b5, 57. 59, 60, 63, 66. 67, 69, 70,
71, 72, 75. 76. 77, 78, 80, 81, 83, 84, 85, 86, 87, B8, 92, 94, 96, 97, 98, 99, 100,
102, 104, 105, 106, 107, 108, 112, 114, 115, 116, 117, 119, 121, 128, 130, 131, 132,
136, 137, 139, 140, 142, 143, 144, 147, 151, 152, 155, 156},

A, = {3, 4, 6, 8, 9, 11, 12, 15, 16, 18, 20, 21, 22, 24. 25, 26, 28, 29, 30,
31, 32, 34, 35, 37, 39, 40, 41, 42, 45, 4%, 50, 51, 52, 53, 55, 56, 57, 59, 60, 62,
63, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 8%, 90, 92, 94,
%7, 98, 949, 100, 101. 102, 104, 105, 106, 108, 109, 110, 312, 114, 115, 117, 118,
119, 120, 121, 125, 126, 129, 130, 131, 132, 134, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 147, 151, 152, 153, 154, 156 },

the clique numbers of the graph G, (A are: [A, 1 =[A,1=2,[A]=3.[A]=5,[A]=
8.0A; 1 = 13,[A;] = 16 respectively.

Proof.

(1) Let A =A,and B = {z|lz| € A}. We obtain max {d{a).a € A} = 0=>[A, 1= 2.

Similarly we may prove that [A,] = 2.

(2) Let A= A;and B = {x||z] € A}, We obtain d(10) = d(14) =d(17) = d(30) =
d(40) == d(41) = d(42) = d(43) = d(46) = d(47) = d(51) = d(53) = d(56) = d(62) =
d{85) = d(68) =d(74) = d(89) = d{(80) =&(31) = d {101 =d(109) = d(110) = d(118)
= d(120) =d{122) = d(123) = d(125) =d(126) =d(127) = d{129) = d(134) = d(138)
= d(141) = d(143) = d(146) = d(149) = d(153) = d(154) = 14 by computation.

Hence the elements of B can be arranged in the ascending order:

(B,, <5 = {10, —10, 14, —14, 17, —17. 30, —30, 40, —40., 41, —41, 42, —
42, 43, —43, 46, —46, 47, —47, 51, —51, b3, —53, 56, —56, 62, —62, 65, —
65, 68, —68, 74, —74, 89, —89, 90, ~—9H0, 91, —H1, 101, —101, 108, —109, 110,
-1i0, 118, —118, 120, —120Q, 122, —122, 123, —123. 125, —125, 126, —126, 127,
—127, 129, —12%, 134, —134, 138, ~138, 141, -~141, 145, —145, 146, - 146, 149,
—149, 153, —153, 154, —154}.

Fora = 10, the set {¥ € B}|y —a] € A} is equal to {—30, 40, —41, —43, —46, 51,
53, 56, —91, 101, —110, 120, ~-149, —154},

which is obtained during the computation of (a). Hence the longest A -chain initiated from
ais 10<30. Thus {{a) = 1.

Similarly we may prove that /(a) < 1 for every a« € A, Therefore we have

[B]=1+ max{{{a)|a € A} = 2and [4;] = 3.

(DLletA=A,and B= {z||x]| € A}. Weobtaind(9) =d(11) =d(12) =d(16) =d(50)
= d(70) =d(78) =d(83) =d(B5) = d(98) = d(104) = d(119) = d(142) = 24,d(31) =
d(37) = d{45) = d{55) = d(60) = d(63) = d{(77) = d(80) = d(84) = d(102) = 4(106)
=d(112) = d(136) = 31,d(18) = d(22) = d(24) = d(29) = d(32) = d(75) = d(100) =
d(105) = d(117) = d(140) = £{143) = d(147) = d(156) = 35.4(30) = d{4{) = d(42) =
d(51) = d(53) = d(56) = d(68) = d(118) = d(125) = d{129) = d{(134) = 4(138) =
d(141) = 36 by computation,

Hence the elements of B can be arranged in the ascending order:

(B,, <) = {9, —9, 11, —1, 12, —12, 16, —16, 50, —50, 70, —70, 78, —
78, 83, —B83, 85, —85, 93, —98, 104, —104, 119, —119, 142, —142, 31, —31, 37,
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—37, 45, —45, 55, —55, 60, —60, 63, —63, 77, —77, 80, —80, 84, -84, 102,
—102, 106, —106, 112, —112, 136, —136, 18, —18, 22, —22, 24, —24., 29, —29,
32, —32, 75, —75, 100, —100, 105, —105, 117, —117, 140, —140C, 143, —143, 147,
—147, 156, —156, 30, —30, 40, —40, 42, —42, 51, —51, 63, —53, 56, —56, 68,
—68, 118, —118. 125, —125, 129, --129, 134, —134, 138, —138, 141, —141}.

Fora= 9, theset{v & B ||y— a| € A}isequal to {—9, 31, —31, 60, 77, 84, 18,
-2, —75, 143, 147, —147, 156, 40, —42, 51, —5b1, —68, —125, —129. 134, —
134, 138, —138;},

which is obtained during the computation of &(a). Hence the longest A -chain initiated from
ais 9 —9<147<—134. Thus{(a) = 3,

Similarly we may prove that /(a) < 3 for every a € A. Therefore we have

[B] =1+ max{i(a)|e € A} =4 and [A,] = 5.

(DLletA=A;and B= {z}|z| € A}. Weobtamd(S)—-—d(fD—d(Zﬁ)_d(S’?)—d(?ﬁ)
= d(8]) = d(99) = d(108) = d(121) = 4 (132) = d(137) = d(139) = d(144) = 65,d{10)
=d{14)y=d(17) =d(43) =d468) =d47) = d($5) =d(91) = d(122) = d(123) = d(127)
= d{146) = d(149) = 72.,d(41) = d(62) = d(74) = 4(89) = d(30) = &(101) = J(109)
= d(110) = d{120) = d(126) = d(145) = d(153) = d(154) = 76.,d{(6) = d(8) = d(15)
= d(20) = d{(21) =d{25) =d(28) = d(34) = d(35) = d(39) = d(49) = d(52) = d(59)
= d{(67) =d{69) =d(71) =d(86) =d(92) =d(94) =d(97) = d(114) = d(}115) =4(130)
= d(131) = d(151) = d(152) = 77,d(2) = d(13) = d(38) = d{(54) = d(66) = d(72) =
d(87) = d(BR) = d(96) = &{107) = d¢116) = d(128) = J(155)} = 80 by computation,

Hence the elements of B can be arranged in the ascending order:

(Bs, <) = {3, —3, 4, —4, 26, —26, 57, —57, 76, —76, 81, —381, 0%, —99,
108, —108., 121, —121, 132, —132, 137, —137, 139, —135, 144, —144, 10, —10,
14, —14, 17, —17. 43, —43, 46, —46, 47, —47, 65, —65, 91, —91, 122, —122,
123, —123, 127, —127, 146, —146, 149, —149, 41, —41, 62, —62, 74, —74, 89,
—8%, %0, —9%¢, 101, —101. 109, ~10%, 110, ~110, 120, —120, 126, —126, 145,
—145, 153, —153, 154, —154, 6, —6, 8, —8&, 15, —15, 20, —20, 21, —21, 25§,
—25, 28, —28, 34, —34, 35, —35, 39, —3%, 49, —49%, 52, —52, 55, ~59, &7, —
67, 69, —69, 71, —71, 86, —86, 92, 92, 94, —94, 97, —97, 114, —114, 115,
—115, 130, —130, 131, -—131, 151, —151, 152, —152, 2, —2, 13, —13, 38, —38,
54, —54, 66, —66, 72, —72, 87, —87, 88, —88, 96, —96, 107, —107, 116, —116,
128, —128, 155, —155}.

Fora= 3, theset {(y € B ||y —a| € A}isequal to {—3, 57, 99, —10, —14, 17, —
17, —43, 46, —46, 65, 91, —91, 123, —123, —127, —146, 149, —149%, 41, 62, —
62, 74, 89, —B9, 90, 110, —120, 126, 154, 6, 20, —25, 28, —35, 49, —49, 52,
-—59, 69, —6%, —71, —86, 92, 94, —94, 97, 130, 131, —151, 152, —152. 13, 38,
—38%, —54, —66, 72, —87, —88, —9v6, —107, —128, 135, —155},

which is obtained during the computation of 4{(a). Hence the longest A -chain initiated {rom
ais 3<X—3<46<—123<89<—69=<155. Thus {a) = 6.

Similarly we may prove that [(a)} << 6 for every a € A, Therefore we have

[B] =14 max{/{(a)|a € A} = 7 and [A;] = 8.

(5)Let A= Agand B= {x| |x| € A}. We obtaind(8) =d(8) = d(25) =d(35) =43P
= d(49) = d(52) = d(71) = d(97) = d(114) = d(115) = d{151) = 4(152) = 103,d(2)
=d(13) =d(38) =d(54) =d(66) =d(72) =d(87) = d(88) =d(96) = d(107) =4(116)
= d{128) = d(155) = 104.d{18) = d(22) = d(24) = d(29) = d(32) = d(75) = 4(100)
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= d(105) = d(117) = d(140) = d(143) = d(147) = d(156) = 105,d(3) = d(4) = d(9)
=d(11) = d(12) = d(16) = d(26) == d(50) = d(57) == d(70) = d(76) = d(78) = d(81)
= d(83) = d(85) = d(98) = d(99) = d(104) = d{(108) = d(119) = d(121) = d(132) =
d{137)Y = d{139)zd(142) = d{144) = 107,d(15) = d(20) = d(2]1) = d(28) = d(34) =
d(59) = d(87) = d(69) = d(86) = d(92) = d(94) = d(130) = d(131) = 108,d(31) =
d(37) = d(45) = d(55) = d(60) = d(63) = d(77) = d(80) = d(84) = 4(102) = 4(106)
= d(112) = d{(136) = 110 by computation.

Hence the elements of B can be arranged in the ascending order.

(B, <) = {6, —6, 8, —8, 25, —25, 35, --35, 30, —39, 4%, —49, 52, —52,
71, ~%1, 97, —97, 114, —114, 115, —115, 151, —151, 162, —152, 2, —2, 13, —
13, 38, —38, 54, —54, 66. —66, 72, —72, 87, —87, 88, —88, 96, —96, 107, —
107, 116, —116, 128, —128, 155, —155, 18, —18, 22, —22, 24, —24, 29, —29,
32, —32, 75, —75, 100, —100, 105, —1065, 117, —117, 140, —140, 143, -~ 143, 147,
—147, 156, —156, 3, —3, 4, —4, 9, —9, 11, —11, 12, —12, 16, —16, 26, —26,
50, —50, 57, —57, 70, —70, 76, —76, 78, —78, 81, —81, 83, —83, 85, —8L, 98,
—98, 99, —8%, 104, —104, 108, -108, 119, —119, 121, -121, 132, —132, 137,
—137, 139, —139, 142, —142, 144, ~—144, 15, —15, 20, —20, 21, —21, 28, —28,
34, —34, 59, —59, 67, —67, 69, —69, 86, —86, 92, —92, %4, —9%4, 130, —130,
131, —131, 31, —31, 37, —37, 45, —45, 55, —55, 60, —60, 63, —63, 77, —77,
8a, —80, 84, —84, 102, —102, 106, —106, 112, —112, 136, —136}. ,

Fora =6, theset {y & B ||y —al| & A}isequal to {—6, 8, —25, 35, —39. —49, —
71, 114, —115, —151, —152, 2, —2, 38, —54, 66, —66, 72, —72, 87, —88, —
%6, —155, 18, —18, 22, —22. 24, —29, 32, —32, 75, —75, 100, —100, —105, 143,
—156, 3, —3, 4, 9, —9, 12, —12, —16, 26, —26, —57, —70, 76, 78, —78, 81,
— 81, 83, 98, —98, —99, 104, 108, —108, 121, 137, —137, 142, 15, —15, —20, 21,
28, —28, 34, 69, —69, 84, —86, 92, —92, 94, —94, —130, —131, 31, —31, 37,
45, 55, &0, —80, 63, —43, 77, ~77, —80, 84, 102, —1i0Z2, 106, —106, 112, 136,
—136},

which is obtained during the computation of & (a). Hence the longest A- chain initiated from
2is 6§ —~6<66<72<75<3<—~ 39 —9<12<~12=<69. Thusi{a) = 11.

Similarly we may prove that /(a) <{ 11 for every a € A. Therefore we have

[B] == 1 + max{i{(a)|a € A} = 12 and [A;] = 13.

() LetA==A,and B= {z||x| € A }. We obtaind(3) =d{4) =d(26) =d(57) =d(76)
= Jd(81) = d(99) = d{(108) =d (121) = d(132) =d(137) = d(139) = d(144) = 136,d(9)
= d(11) = d(12) = d(16) = d(18) = d(22) = d(24) = d(29) = d(32) =d(50) =d(70)
= d(75) = d(78) = d(B3) = d(85) = d(98) = d{100) = d{104) = d(105) = d(117) =
d(119) = d(140) = d(142) = d(143) = d(147) = d(156) = 137,4(6) = d(8) = d(25) =
d(30) == d{(35) = d(39) = d{40) = d{42) = d(49) = d(51) = d(52) = d(53) = d(56) =
d(68) = d(71) = d{(97) = d4(114) = d(115) = d(118) = d(123) = d(129) = d(134) =
d(138) = d(141) == d(151) = 4(152) == 139,d(15) = d(20) = d(21) = d(28) = d(34) =
d(59) = d(87) = d(69) = d(86) = d(92) = d{(94) = d(130) = d{131) = 142, d4(31) ==
d(37) = d(41) = d{45) = d(55) = d(60) = d(62) = d(63) = d(74) = d(77) = d(80) =
d(84) = d(89) == d(90) = d(101) = d(102) = d(1068) = 4(109) = d(110) = d(112) =
d(120) = d(126) = d(136) = d(145) = d(153) = d(154) = 143 by computation.

Hence the elements of B can be arranged in the ascending order:

(B,, <)=1{3, —3, 4, —4, 26, —26, 57, —57, 76, —76, 81, —81, 89, —99,
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108, —108, 121, —121, 132, —132, 137, —137, 139, —139, 144, —144, 4, —9, 11,
-—11, 12, —12, 16, —16, 18, —18, 22, —22, 24, —24, 29, —29, 32, —32, 50, —
50, 70, —70, 7%, —75, 78, —78, 83, —83, 83, —85, 98, —98, 100, —100, 104,
—104, 105, —105, 117, —117. 119, —119, 140, —140, 142, —142, 143, —143, 147,
— 147, 156, —156, 6, —6, 8, —8, 25, —25, 30, —30, 35, —35, 3%, —39, 40, —
40, 42, —42, 49, —49, 51, —51, %2, —5&2, 53, —53, 56, —hL&6, 68, —¢8, 71, —
71, 97, —97, 114, —--114, 115, —115, 118, —118, 125, —125. 129, 129, 134. —
134, 138, —138, 141, —141, 151, —151, 152, —152, 15, —15, 20, —20, 21, —21,
28, —28, 34, —34, 59, —59, 67, —67, 6%, —69, 86, —86, 22, —92, 94, —94, 130,
-—13¢, 131, —131, 31, —3t, 37, —37, 41, —41, 45, --45, 55, —55, 60, —60, 82,
—62, 63, —63, 74, —74, 77, —77, 80, —80, 84, —84, §%, —§&H, 90, —90, 101, —
101, 102, —102, 106, —106, 109, —109, 110, —1190, 112, —112, 120, —120, 12§,
—126, 136, —136, 145, —145, 153, —153, 154, —154}.

Fora=3,theset{v & B ||y —a| € A} is equal to {—3, —26, —57, 81, —81, —99,
108, 121, 132, 137. —137, 139, —139, 144, —144, %, —9, 11, 12, ~12, 18, —18,
—22, 24, 29, —26, 32, —32. —50, 7¢, —75, 78, —78, 83, —83, —98, 100, 104,
105, —105., 117, —117, 140, —140, 142, — 142, 143, 147, 156, —136, 6, —6, —8&,
25, —25, 35, —39, 40, 42, —42, —49, 52, —52, 53, —53, 56, —5H6, —68, 71, —
71, 97, -97, —114, 115, —115, 118, —118, 129, —129, 134, —134, —138, 141,
—141, —151, 15, ~15, 21, —21, 28, —28, 34, —34, 59, —59, —67, 86, —86, &2,
-—94, ~—-191, 31, —31, 37, —37, 45, 55. 60, —60G, 62, 63, 74, —74, 77, —77. 80,
—80, 84, 89, —8%, 101, —101, 102, —102, —106, 109, —10%, 112, —112, 120, —
126, —136, 145, —153, 154, —134},

which is obtained during the computation of d(a). Hence the longest A- chain initiated {rom
als 3 —3<K137 <~ MM < —29<{—32<52<141 < — 141 <86 <31 <0< — 741 <102 —
109, Thus {(a) = 14.

Similarly we may prove that /(a) < 14 for every @ € A. Therelore we have

(B]=1+ max{{(a)|a & A} = 15 and [A,] = 16.

4 Prool of Theorem 1

Let # be a prime number. Let Z7 =S, UJ ==+ U S, be a partition of the set 7. Let Z,be the
vertex set of the complete graph K,. Let E, = {{x,y} € Z, X Z,||x —y| € Stforl i< n
Then E; U »++ U E,is a partition of the edge set £ of K,. We say that the edges in E, are colored
in{. Thus we obtained a coloring of the edges of K, using n colors 1,++,n.

The subgraph G,(S,) = (Z,,E,) is exactly the circulant graph associated with the parameter
set S, as defined in Definition 1. Let [S.] denote the clique number of G,(S:). 1t follows [rom
Ramsey’s Theorem that

Lemma 4 R([S,]+ 1,[S:]1+ 1.~ [S.])+ D =p+ 1

Proof of Theorem 1: Let p = 313.

1) Let S5, = A,,8, = A,,5; = A;. Then {5,,5;,5;} is a partition of Z7. Lemma 3 implies
that [S,1=[S,] = 2,[S8;] = 16. Tt follows from Lemma 4 that R(3,3,17) == 314.

2) Let S, = A,,S; = A,,5; = Ag. Then {5:,5,,5:} is a partition ol Z}. Lemma 3 implies
that [S,]= 2,(S;] = 3,08,1 = 13. It follows from L.emma 4 that R(3.4,14) = 314.

3) LetS, = A;,S5, = A,,5; = A;. Then {5,,5,,5;} is a partition of Z; . Lemma 3 implies
that [.8,] = 2,[5,] = 5,[S:] = 8, and it follows [rom Lemma 4 that R(3,6,9) == 314. [}
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