Journal of Guangxi Academy of Sciences

一种 P 公钥网络全公开口令系统的设计实现*

Design and Implementation of an All Public Password System of P Public Key of Network

计曲结 李业清** 彭宏祥***

Peng Dianchang Li Yeqing Peng Hongxiang

(广西玉林维宇信息安全应用技术有限公司 玉林 537000)

(Yulin Weiyu Information Security Application Technology Co. Ltd., Yulin, 537000)

基干 PDX 体制构造理论,设计出一种网络全公开口令系统,论述该口令系统单向密码 的创新性和实用性,安全性分析证明 P 公钥网络公开口令系统具有高强度安全性能,

关键词 P公钥 网络 公开口令系统 单向密码

中图法分类号 TP 393.08

Abstract On the base of structural theorem of PDX system, an all public password system of network is released, its innovation and practicality of one-way cipher is expounded. Safety analysis showed that public password system of P public key of network possessed high security.

Key words P public key, network, public password system, one-way cipher

当今信息安全领域中,随着信息化和网络化的迅猛发展,对信息的各种攻击方式在逐年 更新递增 11. 根据公开的统计数据,现行的攻击手段已超过 4 000 种,在众多的攻击手段中, 口令攻击发生频率是最高的,口令攻击与反攻击是影响最大的攻防战术,因此研究解决口令 的安全认证技术,显得尤为重要,许多计算机安全事故起源,就是"口令"被破译引起的,黑 客攻击计算机系统常常把破译"口令"作为攻击的开始,然后非法潜入系统获取机密信息,另 外,部分计算机系统内部操作人员容易窃取用户的口令作案,其行踪隐蔽不易发觉,发现案 情时,往往已造成重大损失.传统口令基本模式是:①不公开口令,秘密储存口令.②秘密 认证口令. 目前因特网 UNIX 操作系统基本是这种模式,这是现有众多攻击手段得到"生 存"的基础, 本系统技术彻底更新传统口令模式, 将其变为全公开口令及公开口令认证程序, 不储存口令,试图解决当前"口令"受到攻击的根本问题.

²⁰⁰⁰⁻⁰⁸⁻⁰⁵ 收稿。

^{*}广西自然科学基金资助项目(0009008)。

^{* *}广西计算中心,南宁,530022(Guangxi Computer Center, Nanning, 530022)。

^{* * *}广西农业科学院,南宁,53007(Guangxi Academy of Agri. Sci., Nanning,530007)。

1 算法描述

1.1 加密算法

1.1.1 前置复合函数

明文口令数码 $\{K_j\}=K_1$, K_2 , \cdots , K_n , 另外 , 口令数码特征函数 $W=f_j(k_1$, k_2 , \cdots , k_n) 可以

是任意一种代数函数. 用 $\cos(x)$. $\sin(x)$. SQR(x) 等函数再作一次前置函变, $V_1=f_1(K_1)$, V_2

$$=f_{2}(k_{2}), \cdots, V_{n}=f_{n}(K_{n}), (K_{j},W_{j},V_{j},\in Z). \{K_{j}\}$$
 获第 1 次加密.

1.1.2 自由模函数[3] 矩阵

设 m_j , w_j ($j=1,2,\cdots,i$) 分别为自由模函数 F 的模与生成元,不限 $m_j > w_j$ 及 $\gcd(m_j,w_j)$ = 1 条件, m_i , w_i 可以随机选择.

矩阵
$$\llbracket D
rbracket = egin{bmatrix} d_1 \ \cdots \ d_i \end{bmatrix}$$
 .

 $\lceil D \rceil$ 是用 $F(V_i)$ 构造的 $i \times n$ 矩阵,其中

 $\cdot C_n \cdot w_n/m_n$) $\cdot m_n \cdot \{K_j\}$ 第 2 次加密.

1.1.3 单向函数矩阵

自由模复合函数传导定义为: $F_0(a_0^m) \to a_1^m$: $F_1(a_0^m, a_1^m) \to a_2^m$: $F_2(a_0^m, a_1^m, a_2^m) \to a_3^m \to \cdots \to a_{k-1}^m$: $F_k(a_0^m, a_1^m, \cdots, a_{k-1}^m)^m \to a_k^m$. $(m = 1, 2, \cdots, i)$. 这是 $a_0^m(a_i^m \in Z)$ 连续模复合变换一种形式.

$$\{a_i^m\}(j=1,2,\cdots,k)$$
 组成 $K imes i$ 矩阵 $[A]$.

$$\begin{bmatrix} A \end{bmatrix} = \begin{vmatrix} a_0^1 & \cdots & a_0^i \\ \cdots & & & \\ a_k^1 & \cdots & a_k^i \end{vmatrix} \quad (k < i).$$

$$F = 是是模自中函数 中 a^m \rightarrow a^n$$

 F_j 是异模自由函数,由 $a_0^m \to a_1^m \to \cdots \to a_k^m$ 求 a_k^m 容易,逆 $a_k^m \to a_{k-1}^m \to \cdots \to a_0^m$ 求 a_0^m 困难,

[A] 构成单向密码函数. 经过[D] \bullet [A] 运算, $\{K_j\}$ 得到第 3 次加密.

上述加密算法全过程是明文口令 $\{Kj\}$ 的连续映射过程:

$$K_j \to f_i(K_j) \to [D] \to [D] \cdot [A] = \begin{vmatrix} q_l \\ \cdots \\ q_k \end{vmatrix} \to [H] \to (b_1, \cdots, b_k) ($$
密值 $),$

其中[H] 是后置初等代数变换 K imes K 矩阵

 $\{K_i\}$ 通过[H] 运算得到第四次加密.

开口令特征函数值 W 进行条件判断运算.

1.2 解密算法

本系统解密算法不是逐个求解公开口令 $K_1 \sim K_n$,而是通过单向密码函数式解出M,与公

$$R = \begin{cases} 0 & (M \neq W) & (\mathbf{R}) \\ 1 & (M = W) & (\mathbf{B}) \end{cases}$$

解出 *M* 的单向函数式为

 $M = (\cdots((b_1 - n_1 \cdot (((n_2 \cdot b_2 - b_3)/n_3 + b_2) \cdot n_4 - b_1)/n_5) \cdot n_6 - b_4)/N_7 \cdots b_k)/n_k.$

M 的导出式与自由模传导函数是一个两种不同算法的等价关系. 另外,[D] 映射于[A] 的

结果,使 (b_1,\dots,b_k) 与 (k_1,\dots,k_n) 的某种各自线性组合的模值相等,有模映射式。

 $(S_1 \cdot b_1 + \cdots + S_k \cdot b_k) \equiv (p_1 \cdot k_1 + \cdots + p_n \cdot k_n) \mod n_i$

上述单向函数式和模映射式必须同时满足两种(或若干种)不同性质的数学规则,是现代 密码学一种创新. 以下给出[A] 取 k=4 的一种公开解密程序. (加密程序略)

公开解密判程序

10 INPUT " A?", A#," B?", B#," C?", C#," D?", D#," K1?", K1," K2?",

K2," K3?", K3

20 M # = ((A # - 7 * (((2584 * C # - B #) /6549 + C #) * 276 - A #) /1244) *

545-D#) /2812

30 V # = A # + B # + C # + D # + 137 * M # + 221 * INT (SQR (K1) * 99) - 159 * INT

(SQR (K2) * 99) -38 * INT (SQR (K3) * 99)40 N#=V#-INT (V#/148) * 148

IF N# $^2 > 0$ THEN GOTO 100

60 W1 # = K1 + K2 + K3

W # + 265 * W1 # - INT (265 * W1 # /77777) * 7777770

IF (M # - W #) ^ 2>0 THEN GOTO 100 80

页上, ③用户网页上公开自己的口令判断程序, 供别人调用,

PRINT K1: K2: K3: END 90 100 PRINT "??": END

2 公开口令系统配置方案

本技术的创新在于完全能够公开口令和判断程序,"公开判断程序"实现了长使用周期和 短字节数两项指标,可以设计成。①用户自己保存口令加密软盘,供网络访问时证明身份使 用. ②将公开口令判断程序(或软盘)提供给网络管理机构(或服务器 Web),公布于公共网

用户 A 访问 Web (或网管中心), A 插入口令软盘, 输入随机数, 产生 A 的 ID 地址码和 密码、Web 根据 ID 码调出 A 的公开判断程序解译密值、识别身份真假.

用户 $A \rightarrow B$ 之间访问,被访者 B 同时在网管中心和 A 的网页上调出 A 的公开判断程序. 首先进行 2 种调用程序的"比较"字符运算,结果为 0,再进行解译密码运算:若字符运算结

果非 (),则退出,在某种特殊的使用环境,还可以简化配置方案. 本技术系统的加密软件和解密软件由另一个独立密密钥发生器软盘(或芯片)产生,这

样便干权威部门统一管理,对于任何对象来说,加、解密的原始构造参数都是"零知识"的, 这是"公开口令系统"的一种优良密码性能.

3 高强度安全性分析

本系统的加密算法不公开. 1. 1. 2 描述表明 d_i 为 c_i , w_i , m_i , 三因素 "NP 问题"构造, 1. 1. 3

描述表明 $\lceil D \rceil \cdot \lceil A \rceil$ 的复合矩阵元素对于 (q_1, \dots, q_k) 也是 "NP 问题"构造. 第 2 次加密至第

 $(i+1), r_3 = k \times k$. 考察最小构造规模(n=2, i=4, k=3);情况,当 3 个矩阵的向量基底构 造元素分别取 2 位、4 位、2 位(10 进数)参数时,加密强度 $r=10^{2\cdot n\cdot i+4\cdot k\cdot (i+1)+2\cdot k\cdot k}=10^{94}$. 现有

计算机技术条件破译 1094密钥空间是不可能的.

考察解密程序 20 行,单向密码解译式 7 个常量参数是 A 元素 "子集和" 复合代数运算 产生的,其中包含自由模运算、和、差、积、商、移项通约等等交替转换复杂运算,很难由 这些常量参数逆向导出 1.1.3 定义中系列 (w_1, \dots, w_i) 、 (m_1, \dots, m_i) 等 异 模 参 数 及 一些外部 加入参数,所以单向密码解译式

表 1 部分口令密值离散状态

是安全的.	口令			密值			
考察解密程序 30 行,模映射	K_1	K_2	K_3	b_1	b_2	b_3	b_4
	1	1	1	+56676	-1071186	+04335	+23571300
式 4 个系数常量是 $[D]$ ・ $[A]$ 矩	1	1	2	-02320	-1181611	-14896	+13177985
阵向量关于 m_i 对 k_1, \dots, k_n 的项	1	1	3	-06516	-0375726	-10491	+05037700
, -	1	1	4	-18392	-0105525	-01782	-12461325
求模后的计数结果,属于"NP问	1	1	5	-49196	+0155872	-03569	-27946030
题"和"自由模"双重构造参数,	1	1	6	+03776	+0275671	+20476	-28025765

不可能由这些参数逆推 $[D] \cdot [A]$ 矩阵元素,所以模映射是安全的. 另外,由于自由模变换作 用,密值 (b_1,\cdots,b_k) 呈高度离散状态(表 1),用密值间的相关性或频率分析等破译方法破译密 值也是不可行的。综上所述,本系统的加、解密算法是安全的。

4 结语

公开口令系统是一种高强度安全网络身份认证软件,实现了 P 公钥认证体制的低数位运 行,它也符合一类规范的"零知识证明"模型,在以后信息产业中会得到更广泛的应用。

参考文献

- 倩. 口令攻击技术研究. 密码与信息, 2000, (1), $45\sim54$.
- 李业清等,一种实用票证防伪系统的设计实现,密码与信息,2000,(1)。 $22\sim26$.
- 彭典祥等. P 公钥随机矩阵及解决 Catch 22 问题的方案. 计算机应用研究, 2000, (5): $1\sim 3$.
- 卢开澄、计算机密码学、北京、清华大学出版社、1998、7.
- 5 Bruce Schneier. Applied cryptography; protocols, algorithms, and source code in C. Second edition. John Wiley & Sons. Inc. 1996.

(责任编辑. 蒋汉明)