moEN 2N FEREREA Vol .6 No.2
19904 10 B Jounal of The Guangd Academny of Sdences Oct, 1990

LR E A BB 4T Z: T FAER
MESE - RE BME- DR NEF BEY 8 B

14 E

PpF PR G —RIE AR M ARRAERER, T, 25, ZEMRBRESE,. &
IEGFREPRET -RUREIEROFEFY:, EXT I REERESXERER
RREMAXEIEREE—E., BReiAEEsieE SHAR $PEBEFHFELN &
FEBF R, T HEEAEEFEN, —RE AHFEMAXN 4R E BRETERIRE
FERANBHEREN—ME, FERIDILHFAFEBRER M REFENFESF., XBEXES
HL R T AR 4 TR T A(D —HyperCase) #9i#it. D—HyperCase ELIREN
ERHEKGFEEIHELENED, BTRINTETEFFAURZNEMBPIEFEX RS, 57
B, A28 — TR AT AR R B 4 2,

(XUZEXEF)

IS0 5 A 15 B 4N

http://www.cqvip.com

2 FEHEREER 199G &

Decision — Based Software Development :
Design and Maintenance

Chris Wild Kurt Maly
Lianfang Liu Jann— Shinn Chen Ting Xu

Department of Computer Science
Oid Dominion University
Norfolk, VA 235200162

ABSTRACT

A software maintenance task comprises the activitics of understanding, asscssmeant, analysis, reali-
zation and verification of the required changes. We propose a decision — based software develop-
ment methodology in which the various software objects are related by the deeisions in which
they are involved. A dedision relates a problem to its solution, gives alternate solutions wiich
were considered and justifies the particular solution chosen A decision, or related st of dea-
sions, provides a view of the software system relevant to that decision and allows the retrieval
of source code which resulted from thatdecision. This paper describes the design of
D — HyperCase, a prototype decision — based software development support systen. Since this sys-
tem is being devcloped using the decision based approach, our experiences in deci-
sion—based software dewelopment are also given.

1 Introdoction

The software maintenance activity places a significant cognitive workload on the software eng-
ineer. A proposed change could impact any part of the existing system,requiring the software
maintainer to be able to understand sclected parts of the entire software system in precise de-
tail. The effort curve during software maintenance is significantly different than that during the
initial software development [4]. About half of the effort in a maintenance task is spent on un-
derstanding the existing system.

The success of a software maintenance task crucially depends on the ability to selectively

°This work was sponsored by contract NAS!—18584~41 fiom NASA Langley Research Cemter and
NAVMASSO, Norflk, VA i

http://www.cqvip.com

wow |2y FUEFF AR MERBEHF L BHEF 13

understand those parts of a system which are relevant to the proposed change and to assess the
impact of that change on the existing soltware; hardware /human components of the system, We
defire the closure' of amainenance tusk as the minimal set of information which allows the
mamfainer io perform the task successfulls. This information exists inthe project documentation
base, in the heads of the project personnel or may be inferred from the previous two sources of
sformation. Ore cf the chalienges of a sofiware maintenance support system is to capture the re-
quired ipformation and to organize it in a faslion which facilitates the process of forming
clesure. Traditional forms of scftware documentation suffer both from lack informa-

{1on necessary to understand the relationship between parts of the software system[8]and
from the diffculty of accessing the relevani information that is contained there. The content and
orgamization of this documentation is thus crucial to the success of the maintenance task .

Previous studies [17] have suggested the potential value of organizing the documentation of
the project around the decision structure of the project. In this paper, we describe a prototype
software maintenance support system based onrecording the decision structure, called
DhyperCase, which is cusrently underdevelopment. We believe the decision structure provides a
natural decomposition of the system description which can be used to selectively view that
description and thus assist in forming the closure of the maintenance task. Since we are using a
decision - based approach in the development of the prototype, we describeour experiences with
decision — based software development. But first, a short description of decision based software
development 15 given

2 Decision — Bascd Software Development

The key to decision based software maintenance is the ability to view the source code through
the decisions which led to its creation. It provides alternate means of organizing the source, dil-
ferent from its textual packaging into modules and program files. Potentially, every line of
source code must be tied to at least one decision. These decisions will themselves be tied io
ather decisions through a decision graph providing a path of dependency from the source code to
the system requirements. We believe it essential not only to record all decisions made during the
design process but to connect these decisions. To assess a maintenance task we would want to
know how many lines of code would be impacted if we were to change a decision. We call the
lines of source code tied a particular decision a code view. The relationship is bidirectional to un-
derstand a particular line of source code we want to know why it is there, what problem does it
solve, and fo what requirement can it betraced. In addition, to assist in understanding the sys-
tem, we wish to depict the behavior of the program to be maintained. Finally, in the modifica-
tion of the source code, we wish to reuse previously developed code views together withtheir
decision history. Given these requirements we postulate the solution shownin Figure 1.
A decision is described by the following four components :

Problem: Describes the problem currently being addressed.

http://www.cqvip.com

14 FERERFER 1990 7

Alternatives : A set of proposed solutions.One or more of these alternatives will be chosen as the
proposed solufion to the problem. The rejected alternates may represent inleasible solu-
tions, less optimal scluticns or solutions which require more resources than were available
at the time of the decision.

Solution: The decision to select the proposed solution to the problem.

Justification: An explanation of why the particular solution was chosen and why the other alter-
nates were rejected A justification may refer to otherd ocumentation for support including
formal proof, prototypes, simulation models, constraints, resource limitations or the litera-
ture.

The decision graph is a set of nodes and arcs. Nodes can be decisions(rectangles } or problems

(ovals), arcs are directed links between nodes with the restriction that cycles are not

permitted, The Alternatives, Solution and Justifications are associated with the decision node in

the graph. Justification links can go from problems or decisions to decisions. Solution links go
from problem to decision(only one decision per problem)and from decision to multiple prob-
lems. Both problems and decisions can be terminal nodes in the acyclic graph. If a decision

(solution) is terminal then it represents a sclution to a problem which does not invelve any

more major decisions. A source cede view or a document may be such a terminal solution. If a

problem is terminal it represents a requirement from which only justification links emanate .

One of the major objectives in the development of the decision based approach was to be able
to represent both the functional and non —functional requirements and their interaction. There
are numerous differences between functional and nonfuncticnal requirements. We have found

" that the non— functional requirements tend to constrain the form of the solution and help to
choose among the alternatives. Thus in the solution of a functional requirement , the
justifications typicaily involve the non —[unctional requirements. Also decisions invelving
non — [unctional requirements tend to cut across module boundaries (such as those involving se-
vere performance constraints or the style of the user interface or security policies). In addi-
tion, the satisfaction of non —functional requirements if usually a matter of degree as opposed
to being definitely right or wrong Recently, we have recognized that management decisions re-
garding schedule and other resources serve as part of justification for many decisions.Ja this
way, the effect of the dynamics of the process on the final form of the sclution can be
reflected in the decision structure.

The source code is considered as an entity by itsell or as a collection of code views. Unlike
the disjoint partitioning of source code which results from top~down design, code views may
overlap. Overlaps result from the multiple viewpoints inherent in the decision structure. One
line of code® may exist for several reasons. For instance, the line of code which opens a line print-
er to print itwo kinds of reports is justified by the decisions to generate each report (or justifica-
tion — since either decision justifies the line of code). Even if you later decide not to print ane
of the reports, the line is still justified by the ather decision. Overlaps can also occur dug to and
Justifications, where several decisions are required to justify a line of code. For example, the
line of code to print a date is justiZed both by the decision to generate the report in which the

http://www.cqvip.com

o ®2H FEFL: LIREREMSBGFR i ER 15
date appears and by the decision on the representation of dates in general.

In addition to the decision structure and source code, two more pieces of information are
provided. The behavioral grammar is a set of productions which describe the externally observa-
ble behavior of the program to be maintained. Hence the terminal symbols of the grammar are
the user inputs and the system responses (see [10] for more details) . Finally, documentation
is any other information which might be produced during the design process or

during maintenance. This documentation is project specific but is tied into the decision struct-
ure which provides its own view of that documentation .
As discussed in section 5, the structure of the decision graph is not unique.

3 Designing D —HyperCase: A Case Study in Decision —Based Design

In order to further develop the decision --based approach to software development and to eval
uate its effectiveness for performing software maintenance, we are building a prototype called
D — HyperCase. Since we will use this prototype in itsown maintenance, we are recording the de-
cistons made during its development, using a proosss we refer to as deccision — based scftware de-
sign. Not only 1s the initial design phase the natural place to capture the decision structure, we
felt that many of the activities in initial design involve maintenance (maintenance of requir-
ements, speciflications, designs, etc) as the system evolves. In addition, software maintenance in-
volves design as well and will require the recording of the decisions made during software
modifications. We wanted to understand the extra burden that documenting and main-
taming the decision structure would place on the developers .
Naturally, we were faced with the problem of bootsrapping and documenting D

—HyperCase. In section 4.1 , we describe the incremental | extensible structure of
D —HyperCase which makes it an ideal test case to show the utility of a decision—based sup-
port system for an evolutionary program. At this point, only a samll portion has been imple-
mented and we are forced to illustrate D — HyperCase using hand --drawn figures and graphs
tather than those produced by usingD — HyperCase. 1t is equally difficult to show the dynamic
usage of the decision graph with still pictures. In D—HyperCase, the decision graph is
drawn on a canvas which can be viewed through a window which can bescrolled in
any dircetion or moved at will to related documentation . Here we can only give cutouts
and hint at connectios to other parts of the graph.

In Figure 2, we begin with the root problem te which we can eventually trace every source
code line of D —HyperCase. The problem is to maintain’ (Italicizes words in the text correspond
to decisions or problemss in the figures.) existing or to— be — designed systems. Among the many
paradigms for maintenance we have selected the one where we understand the program, assess
the impact of the change, and make the modification. On the basis of the ideas developed in a
previous paper[11] (which forms the justification to the first and second decisionsin Figure 2,
we have decided to use a methodology of a decision—hased support system. Alternatives at this

http://www.cqvip.com

16 BB FER ¥R 1990 &

stage would be, for instance,data flow metheds,Your don's method, ect. This support system has
a number of functional and non—functional requirements, which are listed below, starting with
source on the left and going right until the assessment node. Nexd comes the problem of how o
relate this method to other tools, how to formally describe the method and how to use
the description for actual use. The understanding of the what, how, and why of the source code re-
quirement i5 decomposed into those of understanding the program btehavior,the mapping of
source code to decisions {and back) and the mapping of decisions o problems (and back ;.
These last requirements are terminal and are only used as _justifications of other decisicns n
the graph. In this case, they justify the behavioral grammar, the decision {o have views
consisting of source code lines, and to have an acyciic graph of decisions and probiem-
5. The remaining problems will lead to requirements originating from the problems of :

» reusing design, decisions, and code

o supporting the design process

« measuring the success of the task

» providing ease of use through a user [riendly interface with adequate performance
» maintaining the consistency between documentation and source code

» gssessing the maintenance task

The problem of the relation of this methodology to other methodologies is solved by providing
a simple interface to compatible methodologies. This allows us to provide access to other
methodologics where appropriate. Other choices would be to have no interface, or tofully
intergrate these methodologies into the decision —based one. This decision in turn will justify a
decision in the process of implementing a layered architecture for D —HyperCase (described
m section 4. 1).

The description problem is decomposed in a theory problem and a content problem. The
subgraph developed under this node leads to the specification of a decision—base software main-
tenance system. The next problem is how to use the formal description. The problem of using
thc-proposcd method is solved by building a computer supported environment. Other choices ar-
e uss paper ~and4pendl support (which is what we are doing in the bootstrapping process},
wing existing tools with only some principles incorporated,e. g , recorg decisions using emaces or *
by #&f existing hypertex tool to link together the related pieces of documentation’(Qur initial
demonstration involved the hypertext system KMS [[1] to tie together decisions and problems}.
Further development under this decision leads to the decisions involved in the design of
D —HyperCase.

http://www.cqvip.com

golt B2H AEFE MURENEMNM L @HgE 17

4 D —HyperCase
4.1 D-—HyperCase Abstract Machine

The project document base was defined in section 1 as the sum total of the recorded information
about the project. The decision structurer ecords the decisions made, alternatives considered and
justifications for the solution chosen. As importantly,the decision structure provides a backbone
with which to orgamze and access the other forms of software documentation The ability (o
sclectively view related parts of a set of documentation from different yviewpoints is dlosely related
to the work on hypertext [5]. In fact some of the early demonstrations of the decision based ap-
proach were done using the KMS hypermedia system [1]. The two limitations to current
bypertext systern which were experienced were the inability to enforce a certain minimal structure
on the set of documentation and the diffiicalty of integrating project related tools, The way
we have chosen to introduce structure in the network of information comprising the
project document base is t0 base the design on a set of typed objects and typed links, Thus a
problem object always contains a link to some decision object. The set of objects and links is us-
er extensible. Each of the objects is managed by its own set of tools which are bound to the
object at the time of object type definition. Each object must haveas a minimum a disp-
lay tool and an edit tool.

Since the ability to access the various objects in the project document base is a crucial part
of our approach, we have chesen to build D—HyperCase on top of an Abstract HyperLink Ma-
chinl AHM) as shown in Figure 3. This appproach is similar to that taken in the design of
Neptune [21 The AHM maintains a data base of all the object types and their associated tools
and the names of all objects according to type. Using this information, it can invoke the appropri-
ate tool to display or edit any object (thus linking to that object}. It also maintains a list of ob
jects which the user has seen this session in order. This allows the user to retrace his steps
through the document base .

The AHM supports two types of links: structured links and sume links. A structured link is de-
fined btween two typed objects,one of which is the "from" object and the other is the " to" ob
ject. Whenever an object at the “from” end of the link is defined, it automatically inherits all
the structured links for which its type is the "from” object. These links define the minimal struc-
ture which must exist for the new object Thus every object of type “problem” must have a link
to a decision. On the other hand, name links provide access to objects using their name. These
links are implicit and need not be represented in the AHM object base. Any object can
bave an arbitrary number of name links.

There is an interface to these facilities which can be accessed by any tool building on this la-
‘Yer. This minimal tool set provided on the Abstract HyperLink Machine layer consists of a modi-
fied emacs text editor [9] and a modified version of the Structured Graphical Knowledge Base
Systemn { SGKBS) {7} under development at ODU. These tools support generic objects of the su-

http://www.cqvip.com

iR Pt s Wy 1993 ¢

L

per class " text” and " graph” respac ii‘:'-»‘ The i];n—ﬂm 31:._ _J*qmt:s— L: ir——anth;tv;; [{,F
a HyperMedia system based on Al O - HyperTuse o then built ov this bayer. Further
Project specified tools can be built on ‘op of D — HyperCose.

D~ typerCase is defined in terms of its objects and assuciated tools. These ate described in
section 4. 2. A D —HyperCase tool can 3 cess the AHM directly through its tool interface. Such
tools are called integrated tools and allow the user to dizectly traverse HyperLinks from witain
the tool(by whatever interface the tool writer wislies to prowvide) . In addition, D — HyperCase al-
lows the inclusion of non —integrated tonts. Thus the st of tools available in I — HyperCase
can be expanded to include commercially available tools. These tools would not have a direct in.
terface into AHM. However, the user could access AHM facilities through the D —HyperCase
background menu as described below. In general, the D — HyperCase tools allow display and ed-
iting of the soltware objects defined ir the project document base in ways appropriate for that
abject. For example, the source cods zditor undersiands the syntax of the source language
(bascause 1t is a stroctured language editor) . the relationship between source code views and
Cecistons and allows the user to access related information throngh the FiyperLink {acility. The
editor or source code objects is built upon ihe modified emacs editor provided in the
minimal tool setbecause source code is a suhclass of the class of text obijects.

4. 2 D —HyperCase: User’s Perspective

We now describe D — HyperCase from the user’s perspective. Figure 4 shows the initial screen
shown to the user upon entering D— HyperCase. This screen provides an overview of the
D — HyperCase Systemn and is an object of type " document figure. © Through the use of the
hyperlink. facility, this screen provides access to other screens which furtherexplain the various
components and usage of D —HyperCase®. The top left panel shows the objects which are de-
fined. A more detailed explanation of cach of the individual types is provided in the overview
figure{ not shown hLere) . The top right panel gives a picterial representation of a

prototypical decision graph. Again further explanation is available on demand. The bottom left
pancl shows the set of tools which are available. The D —HyperCase tools are those provided by
the basic D—HyperCase machine. The User tools are those tools which are provided on top
of D— HyperCase. The bottom right pane! illustrates the HyperLink connection between a deci-
sion node in the decisiongraph and its associated description and the set of source code views af-
fected by this decision. Selecting a decision node in this graph will display a menu which includes
the names of all HyperLinks. This allows access tothe description or source code associated
with this decision. A tutorial assoctated with this panel will lead the user through the use
of the HyperLink facility in forming the closure of a decision.

{ in fact all the figres in this section are of type document fiioe and are used to explain D -- HyperCose . That explains why
the HyperLink™ Overview " appears or these figrues.

http://www.cqvip.com

B BIW XIFEERE: RRENEMARGFE Rt TER 19

Figure 5 show the fayout of the screen during a typical D — HyperCase session. The screen
consists of several windows The farge underlying window contains the decision graph (which can
be brought to the foreground on demand) . The farge window on the right is the editor (modified
emacs) window for all objects which belong to the superclass of text objects. These two windows
are always open.In addition, the user may open several other windows. Figure 5 shows several
read only windows for displaying various information and agraphical editor window to be used
for creating document figures. Each of these windows contain a menu for accessing both tool spe-
cific and D —HyperCase operations .

Surrounding the decision graph window is a background which can be selected to access th-
€ D—HyperCase background menu. This menu alfows direct access to the hyperlink facilities,
such as linking to another object or tracing back to objects previcusly seen. Using the back -
ground menu, the user can access the document base even when using tools which do not
have a direct interface to the AHM.

5 Discussion

Although it will still be several months before the first builds of D —HyperCase are finished to
the point where we can begin to gather experimental data on the elfectiveness of the deci-
sion—based approach to software development,there are serveral important observations which
can be made First this approach is not a panacea for all the ifls plaguing the software engi-
necring community. While we claim the decision structure can be used to provide multiple "natu-
ral” views ofthe software system, the definition of the decision graph is neither easy nor obvious
at first try. But no one said that the generation of complex systems would be easy [3,6). It is not
easy to uncover the true dependencies. There 1s a temptation to represent instead the temporal or-
dering of deasions instead of the necessary dependencies. Since the decision graph is a directed
acyclic graph ordered by the relationship justifies/is —justified — by, it should be possible to
trace from the source code back to the set of requirements which justify it or from a requirement
to the set of source code views that it justifies. The transitivity of this relationship 1s what helps
us to form the closure of a deciston. Anything in the transitive closure of the graph which is

not in the closure of the task is moise and canonly serve to confuse the user.

A second difficulty we have experienced in using this‘approach is that it often easier to identi-
fy the scfution than the problem it sclves. This difficulty is not particular to the decision
bascd approach.lt takes great skill to uncover the real problem when given a list of wants and de-
sites. End uscrs find it hard to articulate their real needs but can often recognize when a pro-
posed solution meets or doesn’t meet those needs. For example, in the design of D — HyperCase,
the need for read —only displays was introduced. Upon examining this need further, it was dis-
covered that we were solving the perceived problem that displaying multiple emacs editor
windo wswould be tooexpensive and that a simpler and fess memory intensive display program
could be used instead. One of the difficulties in intreducing a separate tool for displaying text ob-

http://www.cqvip.com

20 mE M ERY¥EHR 1950 £¢

jects is that if we used an existing UNIX tool (like "more” or "less”) the user interface would be
different from that for the modified emacs. The choice of a read—only display tool was only one
of several alternatives but until the real problem was identified, no consideration of the
possible alternates was made. It is interesting to note with respect to this example,that a second
decision justifying read—only displays can be made based on the argument that by default all ob-
jeets should be read —only. In order to modify an object, it should be explicitly checked out
of the version control library .

The above remarks illustrate one of the advantages of this approach for initial development.
By requiring explicit recording of everydecision, the alternates considered and its justification,
and by requiring the explidt dependency path from every decision to the initial set of requ-
erments, visibility of the design process isincreased This visibility helps in identifving generaliza-
tions of the proposed design. If you wish to solve problem A, first try solving amore general
problem B such that the original problem A 1s just a particular solution to problem B. When we
first started on D—HyperCase, we had only two tools, emacs and SGKBS and no
separate HyperLink machine We first tried to build hyperlinks between emacs and SGKBS he-
fore we realized that we could solve the more general problem, resulting in the HyperLink Ma-
chine, and use it to solve our particular problem Once the more general problem is solved,
extending D —HyperCase to other tools is much simpler. Aiso,by requiring anexplicit path back
to the requirements, unneeded "bells” and “whistles“are identified. Additionally, missing require-
ments may be uncovered.

We have not found the design process to be top down and we suspect that most design is
not. Top down is a good method for presenting a final design decomposition, but is not an accu-
rate reflection of the process of design® (Much like the distinction between the activity of doing
a mathematical proof from its presentation). During the creative ferment of design, people work
at many levels,exploring issues in depth until a solution path becomes clear(this avoids teoo
much backtraciang). Many decisions are made, many problems are identified, alternatives are ex-
plored and rejected and justifications are sometimes hastily made at many levels of the design
somewhat concureently. We have found that the decision based approach helps to organize and
structure this process.As problems are identified, alternative rejected and decisions made, they
are recording without worrying about tying everything together in the decision graph. Later on
after the major insights have been made, the variouspieces are tied together using the prin
ciples of decision baseddesign (e.g.only include necessary dependencies on a dep endency
path). '

We have found recording alternatives to be valuable both todocument dead ends and to pro-
vide starting points for later improved designs. This later is especially useful if one is using
anincremental build philosophy.

6 Conclusions and Future Work

Although we are gaining much valuatle experience in decision based software development in the

http://www.cqvip.com

F 6% WM MEFE UREAEROREFL GIFTER 21

design and impleméntation of D — HyperCase, we are still undoubtably on the learning curve.
we have found that documenting the decision structure provides good discipline. Thus,
this approach may be less of a burden and more of an aid for initial design than originally
thought. The ability of the decision based approach to incorporate management decision and to
relate them to the technical decisions and 1o work across the lift cycleattest to the gener-
ality ofthe approach .

Several of the design choices made for D — HyperCase with respect tothe underlying Abstract
HyperLink Machine (based on typed objects andlinks) and user/ project extensibility (including
the binding of commercially available tools)needs further tnvestigation but may leac to new a-
pproaches to building software development environments. Although we now feel that a deci-
sion— based can help in the initial design, it eflectiveness during soltware maintenance is
untested. The major objective stili to be met is the evaluation of a decision based methodol-
ogy in software maintenance. We are planning controlle dexperiments using the D—H-

yperCase prototype as it evolves.
(Al higures are omitted.)

References

[1] Robert Alkscyn, Donald McCracken, and Alise Yoder. Kims: adistributed hypermedia systern for managing knovdedge in
organizations. CACM, 31(7): 820—B35July 1988.

[2] James Bigelow. Hypertext and case. IEEE Sofware, 23 —27,March 1988 wild tekmonix hypertext Abstract Machine
HAM neptune dynamic design . .

[3] Fred Brooks No silver bultet: essence and accidents of software engineering Computer, 20. 1020, April 1987 wild ifip
incremental development object oriented design .

[4] Ned Chapin. Software maintenance it cycle. Proceedings of theSofpvare Maintenance Conference, 6— 13, October 1988,

[5] Jeff Conklin. A survey of hypertext MCC Technical Report, STP —356 —86(Rev. 2), Dec. 1957, wild r8808013a.

[6] David Lorge Pamas. Software aspects of strategic defense systems. American Scigntist, 73: 432 —440.5ept —Oct E985.

[7}5-N. T. Shen, L. Lin, and J, Hsu A hypergr;.ﬁhics tool lormultidisciplinary applications. Proc. of the Int. Symp. Expert
Systems Theory and Their Applications, Dec. 1988,

{8] Eliot Soloway, Jeannine Pinto, and Stan Letovsky. Designingdocumentation to compensate for delocalized plans

CACM, 31{11): 1259 — 1267 Nov, 1988,

[9] Richard Staltman. Gru emacs manual. October, 1986,

[16] Chris Wid and Kurt Maly. Final report contractpasl— 17993 56. March 1988,

[11] Christan Wild and Kurt Maly. Towards a software maintenancesupport enviranment. Proceedings of the Sofwaoe

Mattena e Conference, 80—85.0ctober 1988 .

http://www.cqvip.com

