引用本文
  • 胡青,龚世才,胡珍.基于改进麻雀搜索算法的空气质量指数预测[J].广西科学,2022,29(4):642-651.    [点击复制]
  • HU Qing,GONG Shicai,HU Zhen.Air Quality Index Prediction Based on Improved Sparrow Search Algorithm[J].Guangxi Sciences,2022,29(4):642-651.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 346次   下载 418 本文二维码信息
码上扫一扫!
基于改进麻雀搜索算法的空气质量指数预测
胡青1, 龚世才1, 胡珍2
0
(1.浙江科技学院理学院, 浙江杭州 310000;2.湖北工业大学理学院, 湖北武汉 430068)
摘要:
为更准确地预测空气质量指数(Air Quality Index,AQI),提出一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)的AQI预测模型(ISSA-BP)。利用麻雀搜索算法(Sparrow Search Algorithm,SSA)的全局搜索性能对BP神经网络的权值和阈值进行优化,解决传统BP神经网络在预测AQI过程中出现的收敛速度慢、易陷入局部最优等问题。同时,针对SSA在优化过程中的缺陷,引入立方映射和优化策略增强算法的全局搜索及收敛能力,进一步提高预测性能。应用ISSA-BP模型预测杭州市AQI,实验结果表明,与其他模型相比,该模型的预测精度有显著提升。本研究为大气污染防治提供了新的预测方法。
关键词:  空气质量指数预测  麻雀搜索算法  混沌映射  优化策略  BP神经网络
DOI:10.13656/j.cnki.gxkx.20220919.004
投稿时间:2022-04-04
基金项目:国家自然科学基金项目(11571315,12101557,11901525)和浙江省自然科学基金项目(LY20A010005)资助。
Air Quality Index Prediction Based on Improved Sparrow Search Algorithm
HU Qing1, GONG Shicai1, HU Zhen2
(1.School of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310000, China;2.School of Science, Hubei University of Technology, Wuhan, Hubei, 430068, China)
Abstract:
In order to predict Air Quality Index (AQI) more accurately, an AQI prediction model (ISSA-BP) based on Improved Sparrow Search Algorithm (ISSA) is proposed. The global search performance of Sparrow Search Algorithm (SSA) is used to optimize the weight and threshold of BP neural network, which solves the problems of slow convergence speed and easy to fall into local optimum in the process of predicting AQI by traditional BP neural network. At the same time, aiming at the defects of SSA in the optimization process, the cubic mapping and optimization strategy are introduced to enhance the global search and convergence ability of the algorithm and further improve the prediction performance. ISSA-BP model was used to predict AQI in Hangzhou. The experimental results show that the prediction accuracy of the model is significantly improved compared with other models. This study provides a new prediction method for air pollution prevention and control.
Key words:  air quality index prediction  sparrow search algorithm  chaotic mapping  optimization strategy  BP neural network

用微信扫一扫

用微信扫一扫