引用本文
  • 申培萍,李丹华.线性比式和分式规划问题的分支定界算法[J].广西科学,2016,23(5):392-395.    [点击复制]
  • SHEN Peiping,LI Danhua.A Branch and Bound Algorithm for the Sum of Linear Ratios Problem[J].Guangxi Sciences,2016,23(5):392-395.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 459次   下载 528 本文二维码信息
码上扫一扫!
线性比式和分式规划问题的分支定界算法
申培萍, 李丹华
0
(河南师范大学数学与信息科学学院, 河南新乡 453007)
摘要:
针对线性比式和问题(P)提出一种新的分支定界算法,并进行数值验证.该算法把问题转换成等价问题,并利用线性松弛技术建立问题的松弛线性规划,从而将原始的非凸规划问题归结为一系列线性规划问题,通过可行域的连续细分以及求解一系列线性松弛规划,得出的算法收敛到问题(P)的全局最优解.数值算例结果表明算法是可行有效的.
关键词:  线性比式和  全局优化  线性松弛  分支定界  ω分法
DOI:10.13656/j.cnki.gxkx.20161121.011
投稿时间:2016-08-15
基金项目:国家自然科学基金项目(11171094)资助。
A Branch and Bound Algorithm for the Sum of Linear Ratios Problem
SHEN Peiping, LI Danhua
(College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, 453007, China)
Abstract:
In this paper,we presents a new branch and bound algorithm for globally solving the sum of linear ratios problem,which is verified by the numerical examples.The algorithm transform the problem to its equivalent problem,and establish a relaxational linear programming problem of by using a linear relaxation technique,thus the initial nonconvex programming problem is reduced to a sequence of linear programming problems.The proposed algorithm is convergent to the global minimum of (P) through the successive refinement of the feasible region and solutions of a series of relaxation linear programming,and finally numerical examples are given to illustrate the feasibility and effectiveness of the proposed algorithm.
Key words:  sum of linear ratios  global optimization  linear relaxation  branch and bound  ω division

用微信扫一扫

用微信扫一扫