引用本文: |
-
曹庆先,徐大平,鞠洪波.北部湾沿海5种红树林群落生物量的遥感估算[J].广西科学,2011,18(3):289-293. [点击复制]
- CAO Qing-xian,XU Da-ping,JU Hong-bo.Biomass Estimation of Five Kinds of Mangrove Community in Beibu Gulf Based on Remote Sensing[J].Guangxi Sciences,2011,18(3):289-293. [点击复制]
|
|
摘要: |
采用广西海南两地2004年红树林TM影像和红树林群落样地调查数据,应用多元逐步回归分析方法,选取影像光谱特征及纹理特征等作为自变量,对红海榄(Rhizophora stylosa)、木榄(Bruguiera gymnoihiza)、白骨壤(Vicennia mariana)、桐花树(Aegiceras corniculatum)、秋茄(Kandelia candel)以及混合(不分树种)红树林生物量遥感估算建模,研究红树林生物量的遥感估算方法。结果,生物量估算模型拟合效果红海榄 > 木榄 > 白骨壤 > 桐花树 > 混合,秋茄模型无法拟合。回归过程中采用稳健诊断方法去除影响点,并应用聚类分析和因子分析的方法排除多重共线性。得到的生物量估算模型通过相关检验,可以高效、快速地进行红树林生物量的估测。 |
关键词: 生物量 估算 纹理特征 多元回归分析 |
DOI: |
投稿时间:2011-05-25修订日期:2011-06-27 |
基金项目:广西科学院科研专项(08YJ16HS01);广西壮族自治区科学技术厅项目(桂科攻1140002-2-3)资助 |
|
Biomass Estimation of Five Kinds of Mangrove Community in Beibu Gulf Based on Remote Sensing |
CAO Qing-xian1,2,3, XU Da-ping2, JU Hong-bo3
|
(1.Guangxi Mangrove Research Center, Guangxi Key Lab for Mangrove Conservation, Beihai, Guangxi, 536000, China;2.The Institute of Tropical Forest, Chinese Academy of Forestry, Guangzhou, Guangdong, 510520, China;3.The Institute of Forest Resource Techniques, Chinese Academy of Forestry, Beijing, 100091, China) |
Abstract: |
In order to evaluate the biomass of mangrove based on remote sensing, the biomass model of mangrove is estimated with the multiple regression analysis, by extracting spectral information and textural features from TM images, and combining the field survey biomass data.The results show that the accuracy order of biomass estimation model is Rhizophora stylosa>Bruguiera gymnoihiza > Vicennia mariana > Aegiceras corniculatum > mixed species, and that Kandelia candel cannot be modeled.During the process of multiple regression analysis, the effect point is removed by ellipsoidal multivariate trimming and the multicollinearity is eliminated by cluster analysis and factor analysis.All the biomass estimation models got through relevant test and can be applied on the biomass estimation of mangrove. |
Key words: biomass estimation texture feature multiple regression analysis |