引用本文: |
-
沈柳平,姚晓洁,杨继昌.一类具有两个偏差变元的高阶微分方程反周期解的存在唯一性[J].广西科学,2011,18(1):22-25. [点击复制]
- SHEN Liu-ping,YAO Xiao-jie,YANG Ji-chang.Existence and Uniqueness of Anti-Periodic Solutions for a Class of High-order Differential Equation with Two Deviating Arguments[J].Guangxi Sciences,2011,18(1):22-25. [点击复制]
|
|
摘要: |
利用Leray-Schauder度理论,获得一类具有两个偏差变元的高阶微分方程x(n)(t)+f(t,x'(t),x″(t),…,x(n-1)(t))+g1(t,x(t-τ1(t)))+g2(t,x(t-τ2(t)))=e(t)反周期解存在唯一性的充分条件. |
关键词: 高阶微分方程 偏差变元 反周期解 Leray-Schauder度 |
DOI: |
投稿时间:2010-10-13修订日期:2011-01-06 |
基金项目: |
|
Existence and Uniqueness of Anti-Periodic Solutions for a Class of High-order Differential Equation with Two Deviating Arguments |
SHEN Liu-ping, YAO Xiao-jie, YANG Ji-chang
|
(Department of Mathematics and Computer Science, Liuzhou Teachers College, Liuzhou, Guangxi, 545004, China) |
Abstract: |
Some sufficient conditions of the existence and uniqueness of anti-periodic solutions for a class of high-order differential equation with two deviating arguments as follows x(n)(t)+f(t,x'(t),x″(t),…,x(n-1)(t))+g1(t,x(t-τ1(t)))+g2(t,x(t-τ2(t)))=e(t) is obtained by employing Leray-Schauder degree theorem. |
Key words: high-order differential equation deviating argument anti-periodic solutions Leray-Schauder degree |