引用本文
  • 韦扬江,唐高华,林光科.Zn上四元数代数Zn[i,j,k]的零因子和单位群[J].广西科学,2009,16(2):147-150.    [点击复制]
  • WEI Yang-jiang,TANG Gao-hua,LIN Guang-ke.The Zero-divisors and the Unit Group of Quaternion Algebra Zn[i,j,k][J].Guangxi Sciences,2009,16(2):147-150.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 411次   下载 387 本文二维码信息
码上扫一扫!
Zn上四元数代数Zn[i,j,k]的零因子和单位群
韦扬江, 唐高华, 林光科
0
(广西师范学院数学科学学院, 广西南宁 530001)
摘要:
研究Zn上的四元数代数Zn[i,j,k]的零因子和单位群,给出Zn[i,j,k]的零因子个数和Zn[i,j,k]的单位群阶的计算公式,证明Zn[i,j,k]≌M2(Zn)的充分必要条件是n为奇数,并且完全决定了Zn[i,j,k]的单位群结构.
关键词:  四元数代数  零因子  单位群
DOI:
投稿时间:2008-11-17
基金项目:Supported by the National Natural Science Foundation of China (10771095),the Guangxi Science Foundation (0832107,0640070),the Innovation Project of Guangxi Graduate Education (2007106030701M 15) and th e Scientific Research Foundation of Guangxi Ed ucational Committee (200707 LX233).
The Zero-divisors and the Unit Group of Quaternion Algebra Zn[i,j,k]
WEI Yang-jiang, TANG Gao-hua, LIN Guang-ke
(School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530001, China)
Abstract:
We investigate the zero-divisors and the unit group of quaternion algebra over Zn which is denoted by Zn[i,j,k] and obtain the calculating formulas of the number of zero-divisors and the order of the unit group of Zn[i,j,k].We prove that Zn[i,j,k]≌M2(Zn) if and only if n is odd.In addition,the structure of the unit group of Zn[i,j,k] are completely determined.
Key words:  quaternion algebra  zero-divisor  unit group

用微信扫一扫

用微信扫一扫