引用本文
  • 刘金魁,王开荣,郑丽.改进的FR共轭梯度算法及其全局收敛性[J].广西科学,2008,15(4):383-385.    [点击复制]
  • LIU Jin-kui,WANG Kai-rong,ZHENG Li.Modified FR Conjugate Gradient Method and Its Global Convergence[J].Guangxi Sciences,2008,15(4):383-385.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 389次   下载 369 本文二维码信息
码上扫一扫!
改进的FR共轭梯度算法及其全局收敛性
刘金魁, 王开荣, 郑丽
0
(重庆大学数理学院, 重庆 400030)
摘要:
给出一种求解无约束优化问题的改进的FR共轭梯度算法,证明该算法在强Wolfe线搜索下具有充分下降性和较好的全局收敛性,并用数值试验说明新算法是有效的。
关键词:  无约束优化  共轭梯度法  Wolfe线搜索  充分下降性  全局收敛性
DOI:
投稿时间:2008-02-27修订日期:2008-06-25
基金项目:
Modified FR Conjugate Gradient Method and Its Global Convergence
LIU Jin-kui, WANG Kai-rong, ZHENG Li
(College of Mathematics and Physics, Chongqing University, Chongqing, 400030, China)
Abstract:
A modified FR conjugate gradient method is proposed to solve unconstrained optimization problems. Under the strong Wolfe line search, we proved the sufficient descent property and the preferable global convergence of the modified FR method. Many numerical experiments show that the new method is very efficient.
Key words:  unconstrained optimization  conjugate gradient method  Wolfe line search  sufficient descent property  global convergence

用微信扫一扫

用微信扫一扫