引用本文: |
-
谭尚旺,张德龙.一定条件下图的拉普拉斯矩阵的谱半径[J].广西科学,2008,15(4):352-356,360. [点击复制]
- TAN Shang-wang,ZHANG De-long.The Spectral Radius of Laplacian Matrices of Graphs within Certain Limits[J].Guangxi Sciences,2008,15(4):352-356,360. [点击复制]
|
|
摘要: |
研究给定阶、边独立数和圈数的类树图的拉普拉斯矩阵谱半径的精确上界,确定达到上界的所有的图,从而推广树、单圈图和双圈图拉普拉斯矩阵谱半径的结论. |
关键词: 拉普拉斯矩阵 匹配 谱半径 |
DOI: |
投稿时间:2008-01-28修订日期:2008-05-27 |
基金项目:国家自然科学基金项目(10871204)资助 |
|
The Spectral Radius of Laplacian Matrices of Graphs within Certain Limits |
TAN Shang-wang1, ZHANG De-long2
|
(1.Department of Mathematics, China University of Petroleum, Dongying, Shandong, 257061, China;2.Department of Information and Computing Science, Guangxi Institue of Technology, Liuzhou, Guangxi, 545006, China) |
Abstract: |
The sharp upper bound of spectral radius of Laplacian matrices of qusi-tree graphs with given order, edge independence number and cycle number was given, and all graphs corresponding the sharp upper bounds was derived. These results generalize many ones about the spectral radius of Laplacian matrices of trees, unicyclic and bicyclic graphs. |
Key words: Laplacian matrix matching spectral radius |