引用本文
  • 何延生.脉冲偏差分方程的振动性[J].广西科学,2008,15(3):235-237.    [点击复制]
  • HE Yan-sheng.Oscillation of Impulsive Partial Difference Equation[J].Guangxi Sciences,2008,15(3):235-237.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 444次   下载 432 本文二维码信息
码上扫一扫!
脉冲偏差分方程的振动性
何延生
0
(延边大学数学系, 吉林延吉 133002)
摘要:
获得脉冲偏差分方程Am+1,n+Am,n+1-Am,n+pmnAm-r,n-l=0,mm0,nn0-1,mmk,Amk+1,n+Amk,n+1-Amk,n=bkAmk,n,∀nn0-1,kN(1),所有解振动的充分条件,其中{pmn}是一个双指标序列,对m ≥ m0,nn0-1,有pmn ≥ 0且不恒为零,{bk}是实数序列,r,l是正整数,0 ≤ m0m1 < … < mk < …满足limk→∞mk=∞.
关键词:  偏差分方程  振动解  脉冲
DOI:
投稿时间:2007-09-21修订日期:2007-12-24
基金项目:国家自然科学基金项目(10661011)资助
Oscillation of Impulsive Partial Difference Equation
HE Yan-sheng
(Department of Mathematics, Yanbian University, Yanji, Jilin, 133002, China)
Abstract:
By employing arithemetic mean-geometric mean inequality and partial difference inequality, we obtain sufficient conditions for oscillation of all solution of the impulsive partial difference equation Am+1, n+Am, n+1-Am, n+pmnAm-r, n-l=0, mm0, nn0-1, mmk, Amk+1, n+Amk, n+1-Amk, n=bkAmk, n, ∀nn0-1, kN (1), where {pmn} is a double sequence and pmn ≥ 0 and not identically zero, for mm0, nn0-1, {bk} is a real sequence, r, l are positive integers, 0 ≤ m0m1 < … < mk < … with limk→∞mk=∞.
Key words:  partial difference equation  oscillatory solution  impulsive

用微信扫一扫

用微信扫一扫