摘要: |
获得脉冲偏差分方程Am+1,n+Am,n+1-Am,n+pmnAm-r,n-l=0,m ≥ m0,n ≥ n0-1,m≠mk,Amk+1,n+Amk,n+1-Amk,n=bkAmk,n,∀n ≥ n0-1,k∈N(1),所有解振动的充分条件,其中{pmn}是一个双指标序列,对m ≥ m0,n ≥ n0-1,有pmn ≥ 0且不恒为零,{bk}是实数序列,r,l是正整数,0 ≤ m0 ≤ m1 < … < mk < …满足limk→∞mk=∞. |
关键词: 偏差分方程 振动解 脉冲 |
DOI: |
投稿时间:2007-09-21修订日期:2007-12-24 |
基金项目:国家自然科学基金项目(10661011)资助 |
|
Oscillation of Impulsive Partial Difference Equation |
HE Yan-sheng
|
(Department of Mathematics, Yanbian University, Yanji, Jilin, 133002, China) |
Abstract: |
By employing arithemetic mean-geometric mean inequality and partial difference inequality, we obtain sufficient conditions for oscillation of all solution of the impulsive partial difference equation Am+1, n+Am, n+1-Am, n+pmnAm-r, n-l=0, m ≥ m0, n ≥ n0-1, m≠mk, Amk+1, n+Amk, n+1-Amk, n=bkAmk, n, ∀n ≥ n0-1, k∈N (1), where {pmn} is a double sequence and pmn ≥ 0 and not identically zero, for m ≥ m0, n ≥ n0-1, {bk} is a real sequence, r, l are positive integers, 0 ≤ m0 ≤ m1 < … < mk < … with limk→∞mk=∞. |
Key words: partial difference equation oscillatory solution impulsive |