引用本文: |
-
李大林,黄雪燕.广义特征矩阵的唯一性[J].广西科学,2008,15(3):228-230,234. [点击复制]
- LI Da-lin,HUANG Xue-yan.On the Uniqueness of Generalized Eigenmatrices[J].Guangxi Sciences,2008,15(3):228-230,234. [点击复制]
|
|
摘要: |
利用广义特征向量的深度,获得极大若当链的一般形式,并推导出在满足PJP-1=SJS-1的2个可逆矩阵P和S之间存在一个主对角线上具有上三角分块Toeplitz子阵的可逆矩阵H,使得S=PH,从而证明广义特征矩阵的唯一性. |
关键词: 矩阵 广义特征矩阵 若当标准型 若当链 Toeplitz子阵 |
DOI: |
投稿时间:2007-09-21 |
基金项目:广西教育厅科研项目(200707LZ259)资助 |
|
On the Uniqueness of Generalized Eigenmatrices |
LI Da-lin1, HUANG Xue-yan2
|
(1.Department of Basic Courses, Liuzhou Vocational Institute of Technology, Liuzhou, Guangxi, 545006, China;2.Department of Mathematics and Computer Science, Qinzhou College, Qinzhou, Guangxi, 535000, China) |
Abstract: |
The general form of the maximal Jordan chains of the defective matrix is getten with the notation of depths of the generalized eigenvectors.For two invertible matrices P and S such that PJP-1=SJS-1, we find that there exists a block matrix H with upper triangular Toeplitz block matrices laying on its principal block diagonal such that S=PH, which allows to prove the uniqueness of generalized eigenmatrices. |
Key words: matrix generalized eigenmatrix Jordan canonical form Jordan chain Toeplitz block submatrix |