引用本文
  • 余慧敏.一种非对称损失下分布函数的最优不变估计[J].广西科学,2007,14(4):365-366.    [点击复制]
  • YU Hui-min.Estimation of Distribution Function Under an Unsymmetrical Loss Fuction[J].Guangxi Sciences,2007,14(4):365-366.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 362次   下载 406 本文二维码信息
码上扫一扫!
一种非对称损失下分布函数的最优不变估计
余慧敏
0
(广东海洋大学理学院, 广东湛江 524088)
摘要:
给定来自一未知连续分布函数F的容量为n的子样x1,x2,…,xn,考虑分布函数F的不变估计问题.在非对称损失函数L(F(t),d(t))=b∫(exp{a[d(t)-F(t)]}-a[d(t)-F(t)]-1)dF(t)和单调变换群下得到F的最优不变估计为d(t,X)=∑i=0nciI(x(i)≤ tx(i+1)),其中ci=1/aln(∫01ti(1-t)n-idt)/(∫01exp{-at}ti(1-t)n-idt),a≠0,b>0.
关键词:  非对称损失  连续分布函数  不变估计
DOI:
投稿时间:2007-05-29
基金项目:
Estimation of Distribution Function Under an Unsymmetrical Loss Fuction
YU Hui-min
(College of Science, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China)
Abstract:
Given a random sample of x1, x2, …, xn size n from an unknown continuous distribution function F, this paper considers the problem of invariant estimator of the continuous distribution function F.Under the unsymmetrical loss function L (F (t), d (t))=b∫ (exp{a[d (t)-F (t)]}-a[d (t)-F (t)]-1)dF (t), we get the best invariant estimator of the continuous distribution function F.
Key words:  unsymmetrical loss  continuous distribution function  invariant estimator

用微信扫一扫

用微信扫一扫