引用本文: |
-
李安坤,徐安农,张秀军.求解对流扩散方程的一类AGE方法[J].广西科学,2007,14(2):124-127. [点击复制]
- LI An-kun,XU An-nong,ZHANG Xiu-jun.An AGE Method for Solving Diffusion-Convection Equation[J].Guangxi Sciences,2007,14(2):124-127. [点击复制]
|
|
摘要: |
结合Crank-Nicolson格式和第二类Saul'yev非对称格式,设计求解对流扩散方程的交替分组显式方法.得到求解对流扩散方程的交替分组显式方法为(I+G1)Un+1=(I-G2)Un+b1,(I+G2)Un+2=(I-G1)Un+1+b2和(I+Ĝ1)Un+1=(I-Ĝ2)Un+b1,(I+Ĝ2)Un+2=(I-Ĝ1)Un+1+b2该方法是绝对稳定的,且使用方便,适合并行计算,具有较好的精度. |
关键词: 对流扩散方程 交替分组方法 Crank-Nicolson格式 第二类Saul'yev非对称格式 无条件稳定 并行差分格式 |
DOI: |
投稿时间:2006-04-10 |
基金项目: |
|
An AGE Method for Solving Diffusion-Convection Equation |
LI An-kun, XU An-nong, ZHANG Xiu-jun
|
(Department of Computing Science and Mathematics, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China) |
Abstract: |
An alternative segment method for solving diffusion-convection equations is given using Crank-Nicolson scheme and Saul' yev type asymmetric difference schemes. The new method uses these two equations (I+G1)Un+1= (I-G2)Un+b1, (I+G2)Un+2= (I-G1)Un+1+b2 and (I+Ĝ1)Un+1= (I-Ĝ2)Un+b1, (I+Ĝ2)Un+2= (I-Ĝ1)Un+1+b2.It is unconditionally stable and can be used directly on parallel computers. The numerical experiments results show that our method has good accuracy. |
Key words: diffusion-convection equation alternating segment method Crank-Nicolson scheme Saul'yev type asymmetric difference schemes unconditionally stable parallel difference scheme |