引用本文
  • 杨美香,丁宣浩.关于多分辨分析的定义[J].广西科学,2006,13(3):199-202.    [点击复制]
  • YANG Mei-xiang,DING Xuan-hao.On the Definition of Multiresolution Analysis[J].Guangxi Sciences,2006,13(3):199-202.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 322次   下载 375 本文二维码信息
码上扫一扫!
关于多分辨分析的定义
杨美香, 丁宣浩
0
(桂林电子工业学院计算科学与数学系, 广西桂林 541004)
摘要:
总结多分辨分析的性质和多分辨分析的最本质特征,然后给出多分辨分析的最简洁的定义.即若{Vj}jzL2(R)的一串闭子空间序列,满足条件:(1)单调性:…V-1V0V1V2…;(2)稠密性:j=-∞+∞Vj=L2(R);(3)伸缩性:若f(x)∈Vjf(2x)∈Vj+1,jZ;(4)Riesx基的存在性:存在ϕ(x)∈V0使{ϕ(x-k):kZ}是V0的Riesx基.则称{Vj}jxL2(R)的一个多分辨分析.
关键词:  多分辨分析  Riesz基  尺度函数  小波
DOI:
投稿时间:2005-10-17修订日期:2005-11-30
基金项目:
On the Definition of Multiresolution Analysis
YANG Mei-xiang, DING Xuan-hao
(Department of Computational Science and Mathematics, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China)
Abstract:
In this paper, we summarixe the properties of multiresolution analysis and analyse the essential properties of multiresolution analysis, and then we give the simplest definition of multiresolution analysis.Namely, let{Vj}jz be a sequence of closed subspace in L2 (R), if it satisfies the following conditions: (1)monotonicity:…V-1V0V1V2…; (2)density:j=-∞+∞Vj)=L2 (R); (3)scalability:f (x)∈Vjf (2x)∈Vj+1, jZ; (4)existence of Riesx basis:∃ϕ (x)∈V0, such that{ϕ (x-k):kZ}is a Riesx basis of V0, then we call{Vj}jx a mulitiresolution analysis in L2 (R).
Key words:  multiresolution analysis  Riesz basis  scaling function  wavelet

用微信扫一扫

用微信扫一扫