引用本文
  • 吴庆军.一个非单调BFGS信赖域算法[J].广西科学,2006,13(3):187-189.    [点击复制]
  • WU Qing-jun.A Nonmonotone BFGS-Trust-Region Algorithm[J].Guangxi Sciences,2006,13(3):187-189.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 404次   下载 314 本文二维码信息
码上扫一扫!
一个非单调BFGS信赖域算法
吴庆军
0
(玉林师范学院数学与计算机科学系, 广西玉林 537000)
摘要:
将新的BFGS校正公式Bk+1=Bk+(yk*yk*T)/(skTyk*)-(BkskskTBk)/(skTBksk),与文献[16]中的算法相结合给出一个非单调BFGS校正的信赖域算法.该算法在假设条件:(i)存在常数c1,c2,c3,使得对所有的Δk>0,gkRn,对称正定阵BkRn×n,有predkc1||gk||min{Δk,c2||gk||,c3||gk||/||Bk||};(ii)若||Bk-1|| ≤ Δk,则dk=-Bk-1gk;(iii)f(x)是二次连续可微函数,▽2f(xk)是Lipschitz连续,水平集ϕ(x0)有界下,具有全局收敛性和Q-二次收敛性.
关键词:  非单调  BFGS校正  全局收敛性  信赖域算法
DOI:
投稿时间:2006-02-23修订日期:2006-05-24
基金项目:
A Nonmonotone BFGS-Trust-Region Algorithm
WU Qing-jun
(Department of Mathematics and Computer Science, Yulin Teachers's College, Yulin, Guangxi, 537000, China)
Abstract:
A new nonmonotone BFGS-trust-region algorithm is proposed by combining the BFGS update Bk+1=Bk+ (yk*yk*T)/ (skTyk*)- (BkskskTBk)/ (skTBksk), with the algorithm given in references[16].The global and Q-quadratic convergences of the proposed algorithm are also proved under the following conditions: (i)there are constants c1, c2, c3 such that predkc1gk‖ min{Δk, c2gk‖, c3gk‖/‖Bk‖}for Δk>0, gkRn and some symmetry positive definite matrix BkRn×n; (ii)dk=-Bk-1gk if ‖Bk-1gk‖ ≤ Δk and (iii) f (x) is a second-order continuously differentiable function, ▽2f (x) is Lipschitz continuous and the level set ϕ (x0) is bounded.
Key words:  nonmonotone  BFGS update  global convergence  trustregion algorithm

用微信扫一扫

用微信扫一扫