引用本文
  • 罗志敏,罗娟.一类二阶非线性微分方程的解的渐近性[J].广西科学,2005,12(4):262-264.    [点击复制]
  • Luo Zhimin,Luo Juan.Asymptotic Behaviour of the Solutions to a Class of Second Order Nonlinear Differential Equation[J].Guangxi Sciences,2005,12(4):262-264.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 265次   下载 367 本文二维码信息
码上扫一扫!
一类二阶非线性微分方程的解的渐近性
罗志敏, 罗娟
0
(广西师范大学数学系, 广西桂林 541004)
摘要:
利用Schauder不动点定理,研究二阶非线性微分方程u″=f(t,u,u'),t ≥ 1解(fC[[1,∞)×R×R,R])的渐近性,给出方程解渐近于直线at+b(a,bR)的一个充分条件.从而推广文献[2]定理1的结果,简化文献[3]中定理4成立的条件.
关键词:  微分方程  渐近性  非线性  Schauder不动点定理
DOI:
投稿时间:2005-05-11修订日期:2005-06-17
基金项目:
Asymptotic Behaviour of the Solutions to a Class of Second Order Nonlinear Differential Equation
Luo Zhimin, Luo Juan
(Department. of Mathematics, Guangxi Normal University, Guilin, Guangxi, 541004, China)
Abstract:
This paper concerned about the asymptotic behavior of solutions of the nonlinear differential equation:u″=f(t,u,u'),t ≥ 1 where fC[[1,∞)×R×R,R].In our approach a key role is played by Schauder's fixed point theorem.A suffcient condition is given for this equation to have solutions behaving asymptotically like linear functions at+b where a,bR.Our results improve theorem 1 of Reference[2].And the conditions of theorem 4 of Reference[3] are simplified.
Key words:  differential equation  asymptotic behavior  nonlinear  Schauder's fixed point theorem

用微信扫一扫

用微信扫一扫