摘要: |
运用Gel'Fond-Baker方法,证明:对任意确定的正整数k>5,若存在以Fn,Fn+k,Fn+k为边长的Fibonacci三角形,则必有n<k.exp(169.7+2.9k+7ln(k+2)). |
关键词: Fibonacci数 Fibonacci三角形 Lucas数 Gel'Fond-Baker方法 上界 |
DOI: |
投稿时间:2004-09-23修订日期:2004-12-28 |
基金项目:四川省教育厅自然科学基金资助项目(2004B025)和四川阿坝师专校级科研资助课题(ASB05-06)联合资助。 |
|
The Upper Bounds about Fibonacci Triangles |
He Bo
|
(Longchang Xiangshi Middle School, Longchang, Sichuan, 642152, China) |
Abstract: |
Using Gel'Fond-Baker method,we have proved that if existing a Fibonacci triangle with Fn,Fn+k,Fn+k as its sides with k>5,then n < k·exp(169.7+2.9k+7ln(k+2)). |
Key words: Fibonacci number Fibonacci triangle Lucas number Gel'Fond-Baker method upper bound |